题意
求满足$na^nequiv b pmod p$的$n$的个数
因为$n mod p $循环节为$p$,$a^nmod p$循环节为$p-1$,所以$na^n mod p$循环节为$p(p-1)$
假设$n mod p equiv i,a^nmod pequiv a^j$ , 那么$n%p imes a^n%pequiv b pmod p$,得到$i imes a^j equiv b pmod p$,列同余方程$i equiv b*a^{-j} pmod p, iequiv j pmod {p-1}$,解得$i=(p-1)2baj+pj$,在$n$的上限内计算答案
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
LL a, b, p, x, ans = 0;
LL quick_pow(LL x, LL y, LL mod) {
LL ret = 1;
for(; y; y >>= 1) {
if(y & 1) ret = (ret * x) % mod;
x = (x * x) % mod;
}
return ret;
}
int main() {
cin >> a >> b >> p >> x;
for(LL i = 1; i < p; ++i) {
LL inv = quick_pow(quick_pow(a, i, p), p - 2, p);
LL y = b * inv % p;
LL P = p * (p - 1);
LL r = (p * i + (p - 1) * (p - 1) % P * y) % P;
ans += x / P + (x % P >= r);
}
cout << ans << endl;
return 0;
}