(color{#0066ff}{ 题目描述 })
一个无向图(边权为1),输出一下选边的方案使(sum d_i)最小((d_i)为从1到i的最短路)
输出一个方案数和方案(方案数超过k个只需输出k个)
(color{#0066ff}{输入格式})
第一行n,m,k,为点数,边数和k
接下来m行为无向边(权为1)
(color{#0066ff}{输出格式})
第一行为方案数(超过k个只输出k个)
接下来是01表示的方案(每条边选或不选)
(color{#0066ff}{输入样例})
4 4 3
1 2
2 3
1 4
4 3
4 6 3
1 2
2 3
1 4
4 3
2 4
1 3
5 6 2
1 2
1 3
2 4
2 5
3 4
3 5
(color{#0066ff}{输出样例})
2
1110
1011
1
101001
2
111100
110110
(color{#0066ff}{数据范围与提示})
(nleq 2*10^5, n-1leq m leq 2*10^5, 1 leq k leq 2*10^5, m*kleq 10^6)
(color{#0066ff}{ 题解 })
显然这题要求的是最短路图的生成树方案
先找出最短路图,根据dis(到1距离)分层
然后从2开始每个点都有向上连边的方案,统计一下
(O(m*k))输出方案(搜索,枚举)
#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
LL n, m, k;
const int maxn = 2e5 + 100;
struct node {
int to, id;
node *nxt;
node(int to = 0, int id = 0, node *nxt = NULL): to(to), id(id), nxt(nxt) {}
void *operator new(size_t) {
static node *S = NULL, *T = NULL;
return (S == T) && (T = (S = new node[1024]) + 1024), S++;
}
};
using std::pair;
using std::make_pair;
std::priority_queue<pair<int, int>, std::vector<pair<int, int> >, std::greater<pair<int, int> > > q;
std::queue<int> v;
int cnt[maxn], dis[maxn], du[maxn];
bool vis[maxn];
node *head[maxn], *h[maxn];
void add(int from, int to, int id, node **hh) {
hh[from] = new node(to, id, hh[from]);
}
void dij() {
for(int i = 1; i <= n; i++) dis[i] = maxn;
q.push(make_pair(dis[1] = 0, 1));
while(!q.empty()) {
int tp = q.top().second; q.pop();
if(vis[tp]) continue;
vis[tp] = true;
for(node *i = head[tp]; i; i = i->nxt)
if(dis[i->to] > dis[tp] + 1)
q.push(make_pair(dis[i->to] = dis[tp] + 1, i->to));
}
}
void toposort() {
LL tot = 1;
for(int i = 2; i <= n; i++) {
tot *= du[i];
if(tot >= k) break;
}
k = std::min(tot, k);
printf("%lld
", k);
}
void dfs(int d) {
if(!k) return;
if(d == n + 1) {
for(int i = 1; i <= m; i++) printf("%d", vis[i]);
puts("");
k--;
return;
}
for(node *i = h[d]; i; i = i->nxt) {
vis[i->id] = true;
dfs(d + 1);
vis[i->id] = false;
if(!k) return;
}
}
int main() {
n = in(), m = in(), k = in();
int x, y;
for(int i = 1; i <= m; i++) {
x = in(), y = in();
add(x, y, i, head);
add(y, x, i, head);
}
dij();
for(int i = 1; i <= n; i++)
for(node *j = head[i]; j; j = j->nxt)
if(dis[j->to] == dis[i] + 1)
add(j->to, i, j->id, h), du[j->to]++;
toposort();
for(int i = 1; i <= m; i++) vis[i] = 0;
dfs(2);
return 0;
}