zoukankan      html  css  js  c++  java
  • matplotlib 散点图scatter

    1、scatter函数原型

    2、其中散点的形状参数marker如下:

    3、其中颜色参数c如下:

    4、基本的使用方法如下:

    [python] view plain copy
     
    1. #导入必要的模块  
    2. import numpy as np  
    3. import matplotlib.pyplot as plt  
    4. #产生测试数据  
    5. x = np.arange(1,10)  
    6. y = x  
    7. fig = plt.figure()  
    8. ax1 = fig.add_subplot(111)  
    9. #设置标题  
    10. ax1.set_title('Scatter Plot')  
    11. #设置X轴标签  
    12. plt.xlabel('X')  
    13. #设置Y轴标签  
    14. plt.ylabel('Y')  
    15. #画散点图  
    16. ax1.scatter(x,y,c = 'r',marker = 'o')  
    17. #设置图标  
    18. plt.legend('x1')  
    19. #显示所画的图  
    20. plt.show()  

    结果如下:

    5、当scatter后面参数中数组的使用方法,如s,当s是同x大小的数组,表示x中的每个点对应s中一个大小,其他如c,等用法一样,如下:

    (1)、不同大小

    [python] view plain copy
     
    1. #导入必要的模块  
    2. import numpy as np  
    3. import matplotlib.pyplot as plt  
    4. #产生测试数据  
    5. x = np.arange(1,10)  
    6. y = x  
    7. fig = plt.figure()  
    8. ax1 = fig.add_subplot(111)  
    9. #设置标题  
    10. ax1.set_title('Scatter Plot')  
    11. #设置X轴标签  
    12. plt.xlabel('X')  
    13. #设置Y轴标签  
    14. plt.ylabel('Y')  
    15. #画散点图  
    16. sValue = x*10  
    17. ax1.scatter(x,y,s=sValue,c='r',marker='x')  
    18. #设置图标  
    19. plt.legend('x1')  
    20. #显示所画的图  
    21. plt.show()  

    (2)、不同颜色

    [python] view plain copy
     
    1. #导入必要的模块  
    2. import numpy as np  
    3. import matplotlib.pyplot as plt  
    4. #产生测试数据  
    5. x = np.arange(1,10)  
    6. y = x  
    7. fig = plt.figure()  
    8. ax1 = fig.add_subplot(111)  
    9. #设置标题  
    10. ax1.set_title('Scatter Plot')  
    11. #设置X轴标签  
    12. plt.xlabel('X')  
    13. #设置Y轴标签  
    14. plt.ylabel('Y')  
    15. #画散点图  
    16. cValue = ['r','y','g','b','r','y','g','b','r']  
    17. ax1.scatter(x,y,c=cValue,marker='s')  
    18. #设置图标  
    19. plt.legend('x1')  
    20. #显示所画的图  
    21. plt.show()  

    结果:

    (3)、线宽linewidths

    [python] view plain copy
     
    1. #导入必要的模块  
    2. import numpy as np  
    3. import matplotlib.pyplot as plt  
    4. #产生测试数据  
    5. x = np.arange(1,10)  
    6. y = x  
    7. fig = plt.figure()  
    8. ax1 = fig.add_subplot(111)  
    9. #设置标题  
    10. ax1.set_title('Scatter Plot')  
    11. #设置X轴标签  
    12. plt.xlabel('X')  
    13. #设置Y轴标签  
    14. plt.ylabel('Y')  
    15. #画散点图  
    16. lValue = x  
    17. ax1.scatter(x,y,c='r',s= 100,linewidths=lValue,marker='o')  
    18. #设置图标  
    19. plt.legend('x1')  
    20. #显示所画的图  
    21. plt.show()  

                         注:  这就是scatter基本的用法。

    补充:

    颜色映射(colormap)是一系列颜色,它们从起始颜色渐变到结束颜色。在可视化中,颜色映射用于突出数据的规律,例如,你可能用较浅的颜色来显示较小的值,并使用较深的颜色来显示较大的值。

    模块pyplot内置了一组颜色映射。要使用这些颜色映射,你需要告诉pyplot该如何设置数据集中每个点的颜色。下面演示了如何根据每个点的y值来设置其颜色:

    1
    plt.scatter(x_values, y_values, c=y_values, cmap=plt.cm.Blues,edgecolor="none",s=40)

    我们将参数c设置成了一个y值列表,并使用参数cmap告诉pyplot使用哪个颜色映射。这些代码将y值较小的点显示为浅蓝色,并将y值较大的点显示为深蓝色,生成的图形如图。

  • 相关阅读:
    Advanced Configuration Tricks
    Reviewing the Blog Module
    Editing and Deleting Data
    Making Use of Forms and Fieldsets
    Understanding the Router
    SQL Abstraction and Object Hydration
    Preparing for Different Databases
    Java学习理解路线图
    Openstack学习历程_1_视频
    CentOS安装Nginx负载
  • 原文地址:https://www.cnblogs.com/onemorepoint/p/7506211.html
Copyright © 2011-2022 走看看