zoukankan      html  css  js  c++  java
  • BZOJ 1101 Zap (算竞进阶习题)

    莫比乌斯反演

    第一道莫比乌斯反演。。

    尝试按套路推了公式,可以发现其实就是求莫比乌斯函数与k的倍数个数的乘积,预处理前缀和即可。

    #include <bits/stdc++.h>
    #define INF 0x3f3f3f3f
    #define full(a, b) memset(a, b, sizeof a)
    #define FAST_IO ios::sync_with_stdio(false), cin.tie(0), cout.tie(0)
    using namespace std;
    typedef long long ll;
    inline int lowbit(int x){ return x & (-x); }
    inline int read(){
        int X = 0, w = 0; char ch = 0;
        while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
        while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
        return w ? -X : X;
    }
    inline int gcd(int a, int b){ return b ? gcd(b, a % b) : a; }
    inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
    template<typename T>
    inline T max(T x, T y, T z){ return max(max(x, y), z); }
    template<typename T>
    inline T min(T x, T y, T z){ return min(min(x, y), z); }
    template<typename A, typename B, typename C>
    inline A fpow(A x, B p, C lyd){
        A ans = 1;
        for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
        return ans;
    }
    const int N = 50005;
    int _ ,a ,b, d, tot, mo[N], prime[N], sum[N];
    bool vis[N];
    
    void mobius(){
        full(vis, false);
        mo[1] = 1;
        for(int i = 2; i <= N; i ++){
            if(!vis[i]){
                prime[++tot] = i, mo[i] = -1;
            }
            for(int j = 1; j <= tot && i * prime[j] <= N; j ++){
                vis[i * prime[j]] = true;
                if(i % prime[j] == 0){
                    mo[i * prime[j]] = 0;
                    break;
                }
                else mo[i * prime[j]] = -mo[i];
            }
        }
        for(int i = 1; i <= N; i ++)
            sum[i] = sum[i - 1] + mo[i];
    }
    
    int main(){
    
        mobius();
        for(_ = read(); _; _ --){
            a = read(), b = read(), d = read();
            a /= d, b /= d;
            if(a > b) swap(a, b);
            int ans = 0;
            for(int l = 1, r; l <= a; l = r + 1){
                r = min(a / (a / l), b / (b / l));
                ans += (a / l) * (b / l) * (sum[r] - sum[l - 1]);
            }
            printf("%d
    ", ans);
        }
        return 0;
    }
    
  • 相关阅读:
    【iOS】找工作的面试题集锦
    APP项目优化--启动速度优化篇
    【Swift】Timer定时器到底准不准确?
    leetcode刷题 495~
    leetcode刷题 464~
    leetcode刷题 441~
    leetcode刷题 420~
    leetcode刷题 396~
    leetcode刷题 373~
    leetcode刷题 307~
  • 原文地址:https://www.cnblogs.com/onionQAQ/p/10956258.html
Copyright © 2011-2022 走看看