A Space Navigation
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define RI register int
const int MOD = 1e9 + 7;
const double PI = acos(-1.0);
const int INF = 0x3f3f3f3f;
const int N = 2e5 + 20;
int n, m;
char s[N];
int main()
{
int __;
scanf("%d", &__);
while(__ -- )
{
scanf("%d%d", &n, &m);
scanf("%s", s);
int r = 0, u = 0, l = 0, d = 0;
int len = strlen(s);
for(int i = 0; i < len; ++ i)
{
if(s[i] == 'R') r ++;
if(s[i] == 'U') u ++;
if(s[i] == 'D') d ++;
if(s[i] == 'L') l ++;
}
int flag = 0;
if(n >= 0 && r < n) flag = 1;
if(n < 0 && l < abs(n)) flag = 1;
if(m >= 0 && u < m) flag = 1;
if(m < 0 && d < abs(m)) flag = 1;
if(flag) puts("NO");
else puts("YES");
}
return 0;
}
B New Colony
最多也就填充 (10000) 块,直接模拟即可,当滑出边界时 (break) 掉
#include <bits/stdc++.h>
using namespace std;
const int N = 100 + 10;
int n, k;
int h[N];
int main()
{
int __;
scanf("%d", &__);
while(__ -- )
{
scanf("%d%d", &n, &k);
for(int i = 1; i <= n; ++ i) scanf("%d", &h[i]);
int res;
bool flag = 0;
for(int i = 1; i <= k; ++ i)
{
flag = 1;
for(int j = 1; j < n; ++ j)
if(h[j] < h[j + 1])
{
flag = 0;
h[j] ++;
res = j;
break;
}
if(flag == 1) break;
}
if(flag) puts("-1");
else printf("%d
", res);
}
return 0;
}
C Fence Painting
需要的颜色可以直接利用,不需要的颜色染到当前就是该颜色的位置或者接下来就要被染掉的位置
可以用队列暂存当前不需要的颜色,下次染色之前用掉
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 20;
int n, m;
int a[N], b[N], c[N];
int res[N];
map<int, vector<int>> mp;
map<int, vector<int>> hav;
bool check()
{
mp.clear(); hav.clear();
for(int i = 1; i <= n; ++ i)
if(a[i] != b[i]) mp[b[i]].push_back(i);
else hav[b[i]].push_back(i);
queue<int> q;
for(int i = 1; i <= m; ++ i)
{
if(!mp[c[i]].size())
{
if(!hav[c[i]].size()) q.push(i);
else
{
q.push(i);
while(!q.empty())
{
res[q.front()] = hav[c[i]].back();
q.pop();
}
}
}
else
{
while(!q.empty())
{
res[q.front()] = mp[c[i]].back();
q.pop();
}
res[i] = mp[c[i]].back();
a[res[i]] = c[i];
hav[c[i]].push_back(res[i]);
mp[c[i]].pop_back();
}
}
if(!q.empty()) return 0;
for(int i = 1; i <= n; ++ i)
if(a[i] != b[i]) return 0;
return 1;
}
int main()
{
int __;
scanf("%d", &__);
while(__ -- )
{
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; ++ i) scanf("%d", &a[i]);
for(int i = 1; i <= n; ++ i) scanf("%d", &b[i]);
for(int i = 1; i <= m; ++ i) scanf("%d", &c[i]);
if(check())
{
puts("YES");
for(int i = 1; i <= m; ++ i) printf("%d ", res[i]);
puts("");
}
else puts("NO");
}
return 0;
}
D AB Graph
如果存在两个点之间的两条边上字母相同,一直在这两个点之间走即可
如果不存在上述情况,即任意两个点之间的两条边上字母不相同,则分奇偶讨论:
对于奇数的情况,任选两个点,在这两点之间一直走即可
对于偶数的情况,需要找到一个点 (u) 既有到 (x) 的字母 (a) 的出边, 也有到 (y) 的字母 (b) 的出边,在 (u) 和 (x) 之间走一半, 在 (u) 和 (y) 之间走一半即可
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
#define RI register int
const int MOD = 1e9 + 7;
const double PI = acos(-1.0);
const int INF = 0x3f3f3f3f;
const int N = 1e3 + 20;
int n, m;
char g[N][N];
void init()
{
for(int i = 1; i <= n; ++ i)
for(int j = i + 1; j <= n; ++ j)
if(g[i][j] == g[j][i])
{
puts("YES");
for(int k = 1; k <= m + 1; ++ k) printf("%d ", k % 2 ? i : j);
puts(""); return;
}
if(m % 2)
{
puts("YES");
for(int i = 1; i <= m + 1; ++ i) printf("%d ", i % 2 ? 1 : 2);
puts(""); return;
}
for(int i = 1; i <= n; ++ i)
{
int hav_a = 0, hav_b = 0;
for(int j = 1; j <= n; ++ j)
{
if(i == j) continue;
if(g[i][j] == 'a') hav_a = j;
if(g[i][j] == 'b') hav_b = j;
if(hav_a && hav_b) break;
}
if(!hav_a || !hav_b) continue;
puts("YES");
if(m % 4)
{
for(int j = 1; j <= m / 2 + 1; ++ j) printf("%d ", j % 2 ? hav_a : i);
for(int j = 1; j <= m / 2; ++ j) printf("%d ", j % 2 ? hav_b : i);
}
else
{
for(int j = 1; j <= m / 2 + 1; ++ j) printf("%d ", j % 2 ? i : hav_a);
for(int j = 1; j <= m / 2; ++ j) printf("%d ", j % 2 ? hav_b : i);
}
puts(""); return;
}
puts("NO");
return;
}
int main()
{
int __;
scanf("%d", &__);
while(__ -- )
{
scanf("%d%d", &n, &m); getchar();
for(int i = 1; i <= n; ++ i) scanf("%s", g[i] + 1);
init();
}
return 0;
}
E Sorting Books
考虑一种贪心策略,对于当前区间,应该尽量让出现次数较多的颜色保持不变,夹在中间的其他颜色后移.
设(f[i]) 为 ([i, n]) 保持不变的书数量的最大值, 答案为 (n - f[1])
状态转移为 f[i] = max(f[i + 1], f[i]), 若当前该种颜色还没全部出现,考虑维持该颜色不动是否更优
为了防止区间重叠,只有当一种颜色全部出现后再合并区间,即 (f[i] = max(f[i], cnt[a[i]] + f[r[a[i] + 1]))
#include <bits/stdc++.h>
using namespace std;
const int N = 5e5 + 20;
int n;
int a[N];
int f[N], cnt[N], l[N], r[N];
int main()
{
scanf("%d", &n);
for(int i = 1; i <= n; ++ i)
{
scanf("%d", &a[i]);
if(!l[a[i]]) l[a[i]] = i;
r[a[i]] = i;
}
for(int i = n; i >= 1; -- i)
{
f[i] = f[i + 1];
cnt[a[i]] ++;
if(l[a[i]] == i) f[i] = max(f[i], cnt[a[i]] + f[r[a[i]] + 1]);
else f[i] = max(f[i], cnt[a[i]]);
}
printf("%d
", n - f[1]);
return 0;
}