zoukankan      html  css  js  c++  java
  • 机器学习作业(五)机器学习算法的选择与优化——Matlab实现

    题目下载【传送门

    第1步:读取数据文件,并可视化:

    % Load from ex5data1: 
    % You will have X, y, Xval, yval, Xtest, ytest in your environment
    load ('ex5data1.mat');
    
    % m = Number of examples
    m = size(X, 1);
    
    % Plot training data
    plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5);
    xlabel('Change in water level (x)');
    ylabel('Water flowing out of the dam (y)');

    运行结果:

    第2步:实现linearRegCostFunction函数,采用线性回归和正规化求 J 和 grad:

    function [J, grad] = linearRegCostFunction(X, y, theta, lambda)
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    grad = zeros(size(theta));
    
    theta_copy = theta;
    theta_copy(1, :) = 0
    J = 1 / (2 * m) * sum((X * theta - y) .^ 2) + lambda / (2 * m) * sum(theta_copy .^ 2);
    grad = 1 / m * (X' * (X * theta - y)) + lambda / m * theta_copy;
    
    grad = grad(:);
    
    end
    

    第3步:实现训练函数trainLinearReg:

    function [theta] = trainLinearReg(X, y, lambda)
    
    % Initialize Theta
    initial_theta = zeros(size(X, 2), 1); 
    
    % Create "short hand" for the cost function to be minimized
    costFunction = @(t) linearRegCostFunction(X, y, t, lambda);
    
    % Now, costFunction is a function that takes in only one argument
    options = optimset('MaxIter', 200, 'GradObj', 'on');
    
    % Minimize using fmincg
    theta = fmincg(costFunction, initial_theta, options);
    
    end
    

    使用 lambda = 0,测试结果:

    %  Train linear regression with lambda = 0
    lambda = 0;
    [theta] = trainLinearReg([ones(m, 1) X], y, lambda);
    
    %  Plot fit over the data
    plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5);
    xlabel('Change in water level (x)');
    ylabel('Water flowing out of the dam (y)');
    hold on;
    plot(X, [ones(m, 1) X]*theta, '--', 'LineWidth', 2)
    hold off;

    运行结果:很显然,采用 y = θ0 + θ1x 欠拟合。

    第4步:绘制关于训练集数量的学习曲线,在lambda = 0 的情况下,观察训练集的大小1 ~ m给训练误差和验证误差的影响:

    lambda = 0;
    [error_train, error_val] = ...
        learningCurve([ones(m, 1) X], y, ...
                      [ones(size(Xval, 1), 1) Xval], yval, ...
                      lambda);
    
    plot(1:m, error_train, 1:m, error_val);
    title('Learning curve for linear regression')
    legend('Train', 'Cross Validation')
    xlabel('Number of training examples')
    ylabel('Error')
    axis([0 13 0 150])
    

     

    其中学习曲线函数learningCurve:

    function [error_train, error_val] = ...
        learningCurve(X, y, Xval, yval, lambda)
    
    for i = 1:m,
        X_temp = X(1:i, :);
        y_temp = y(1:i);
        theta = trainLinearReg(X_temp, y_temp, lambda);
        error_train(i) = 1 / (2 * i) * sum((X_temp * theta - y_temp) .^ 2);
        error_val(i) = 1 / (2 * m) * sum((Xval * theta - yval) .^ 2);
    end
    
    end

    运行结果:随着训练集的扩大,训练误差和验证误差均比较大,是高误差问题(欠拟合)。

    第5步:为了解决欠拟合问题,需要改进特征,下面对训练、交叉验证、测试三组数据进行特征扩充和均值归一化:

    p = 8;
    
    % Map X onto Polynomial Features and Normalize
    X_poly = polyFeatures(X, p);
    [X_poly, mu, sigma] = featureNormalize(X_poly);  % Normalize
    X_poly = [ones(m, 1), X_poly];                   % Add Ones
    
    % Map X_poly_test and normalize (using mu and sigma)
    X_poly_test = polyFeatures(Xtest, p);
    X_poly_test = bsxfun(@minus, X_poly_test, mu);
    X_poly_test = bsxfun(@rdivide, X_poly_test, sigma);
    X_poly_test = [ones(size(X_poly_test, 1), 1), X_poly_test];         % Add Ones
    
    % Map X_poly_val and normalize (using mu and sigma)
    X_poly_val = polyFeatures(Xval, p);
    X_poly_val = bsxfun(@minus, X_poly_val, mu);
    X_poly_val = bsxfun(@rdivide, X_poly_val, sigma);
    X_poly_val = [ones(size(X_poly_val, 1), 1), X_poly_val];           % Add Ones
    
    fprintf('Normalized Training Example 1:
    ');
    fprintf('  %f  
    ', X_poly(1, :));
    

     

    其中ployFeatures函数实现特征值扩充的作用:

    function [X_poly] = polyFeatures(X, p)
    
    % You need to return the following variables correctly.
    X_poly = zeros(numel(X), p);
    
    X_poly(:, 1) = X(:, 1);
    for i = 2:p,
        X_poly(:, i) = X_poly(:, i-1) .* X(:, 1);
    end
    
    end
    

    其中featureNormalize函数实现均值归一化功能:

    function [X_norm, mu, sigma] = featureNormalize(X)
    
    mu = mean(X);
    X_norm = bsxfun(@minus, X, mu);
    
    sigma = std(X_norm);
    X_norm = bsxfun(@rdivide, X_norm, sigma);
    
    end
    

    第6步:设置不同的lambda,查看拟合结果和学习曲线:

    lambda = 0;
    [theta] = trainLinearReg(X_poly, y, lambda);
    
    % Plot training data and fit
    figure(1);
    plot(X, y, 'rx', 'MarkerSize', 10, 'LineWidth', 1.5);
    plotFit(min(X), max(X), mu, sigma, theta, p);
    xlabel('Change in water level (x)');
    ylabel('Water flowing out of the dam (y)');
    title (sprintf('Polynomial Regression Fit (lambda = %f)', lambda));
    
    figure(2);
    [error_train, error_val] = ...
        learningCurve(X_poly, y, X_poly_val, yval, lambda);
    plot(1:m, error_train, 1:m, error_val);
    
    title(sprintf('Polynomial Regression Learning Curve (lambda = %f)', lambda));
    xlabel('Number of training examples')
    ylabel('Error')
    axis([0 13 0 100])
    legend('Train', 'Cross Validation')

    (1)lambda = 0的情况:过拟合

     

    (2)lambda = 1的情况:过拟合

     

    (3)lambda = 100的情况:欠拟合

     

    第7步:绘制关于lambda的学习曲线,选择最优的lambda:

    [lambda_vec, error_train, error_val] = ...
        validationCurve(X_poly, y, X_poly_val, yval);
    
    close all;
    plot(lambda_vec, error_train, lambda_vec, error_val);
    legend('Train', 'Cross Validation');
    xlabel('lambda');
    ylabel('Error');

    其中validationCurve函数:

    function [lambda_vec, error_train, error_val] = ...
        validationCurve(X, y, Xval, yval)
    
    m = size(X, 1)
    for i = 1:size(lambda_vec),
        lambda = lambda_vec(i);
        theta = trainLinearReg(X, y, lambda);
        error_train(i) = 1 / (2 * m) * sum((X * theta - y) .^ 2);
        error_val(i) = 1 / (2 * m) * sum((Xval * theta - yval) .^ 2);
    end
    
    end

    运行结果:可以看出,在lambda在[2, 3]上有较好的效果。

  • 相关阅读:
    could not detect mdm peripheral on hardware
    学习zynq的一些感受
    sdk添加新的C文件编译出错
    linux下驱动webcam
    转:fatal error: SDL/SDL.h: No such file or directory
    转:Unknown module(s) in QT: multimedia
    HFSS设计导入AD中
    REST(Representational state transfer)的四个级别以及HATEOAS介绍
    Servlet CDI Example Analysis
    Introduction and use of Cookie and Session(Cookie&Session的介绍和使用)
  • 原文地址:https://www.cnblogs.com/orangecyh/p/11732794.html
Copyright © 2011-2022 走看看