zoukankan      html  css  js  c++  java
  • Solution -「BZOJ 3779」重组病毒

    Description

    Link.

    Given is a tree. Every node initially has a color which is different from others'. (called (col_{x}))

    Def: ( ext{dis}(x,y)): the number of different colors on the simple path between x and y.

    Supporting the following operations:

    1. RELEASE x: For each (y) on ( ext{path}(x,rt)), make (col_{y})=a new color which doesn't exist before.
    2. RECENTER x: Make (x) become the new root after running RELEASE x.
    3. REQUEST x: Print: for each (y) in ( ext{subtree}(x)), the sum of ( ext{dis}(y,rt)) divided the number of nodes in ( ext{subtree}(x)).

    Solution

    Link Cut Tree.

    We can know that ( ext{dis}(x,rt)) is the number of Fake Edges on ( ext{path}(x,rt)) pluses one.

    If we change a Real Edge ((u,v)), where (dep_{u}<dep_{v}) into a Fake Edge, for each node (x) in ( ext{subtree}(v)), ( ext{dis}(x,rt)) will be decreased by (1).

    Vice versa.

    In order to support such operation: decrease the subtree by (1), we can fix the DFS order of the given tree.

    However, we also need to change the root. How can we fix the DFS order of the given tree?

    Let's have a discussion. Denote (x) for the current operating node, (rt) for the current root.

    1. if (rt=x): modify the whole tree directly.
    2. if (rt) isn't in ( ext{subtree}(x)): modify ( ext{subtree}(x)).
    3. if (rt) is in ( ext{subtree}(x)): modify ( ext{subtree}(x)) and cancel the modfication of ( ext{subtree}(rt))
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    vector<int> e[100010];
    int n,m,indfn[100010],outdfn[100010],sjc,fa[100010][20],dep[100010],rtnow=1;
    #define check(x,f) ((indfn[x]<indfn[f])|(indfn[x]>outdfn[f])) // check whether x isn't in subtree(f)
    void dfs(int x,int las)
    {
    	dep[x]=dep[las]+1,fa[x][0]=las,indfn[x]=++sjc;
    	for(int i=1;i^20;++i)	fa[x][i]=fa[fa[x][i-1]][i-1];
    	for(unsigned int i=0;i<e[x].size();++i)	if(e[x][i]^las)	dfs(e[x][i],x);
    	outdfn[x]=sjc;
    }
    int getkth(int x,int k)
    {
    	if(k==0)	return x;
    	else
    	{
    		for(int i=0;i^20;++i)	if((k>>i)&1)	x=fa[x][i];
    		return x;
    	}
    }
    struct LinearTree
    {
    	struct node
    	{
    		LL val,tag;
    	}nodes[400010];
    	void turn(int x,int l,int r)
    	{
    		if(nodes[x].tag)
    		{
    			int mid=(l+r)>>1;
    			nodes[x<<1].val+=(mid-l+1)*nodes[x].tag;
    			nodes[x<<1|1].val+=(r-mid)*nodes[x].tag;
    			nodes[x<<1].tag+=nodes[x].tag;
    			nodes[x<<1|1].tag+=nodes[x].tag;
    			nodes[x].tag=0;
    		}
    	}
    	void ins(int l,int r,int x,int fr,int ba,int val)
    	{
    		if(fr>ba||l>ba||r<fr)	return;
    		if(l>=fr&&r<=ba)	nodes[x].val+=(r-l+1)*val,nodes[x].tag+=val;
    		else
    		{
    			int mid=(l+r)>>1;
    			turn(x,l,r);
    			ins(l,mid,x<<1,fr,ba,val);
    			ins(mid+1,r,x<<1|1,fr,ba,val);
    			nodes[x].val=nodes[x<<1].val+nodes[x<<1|1].val;
    		}
    	}
    	LL find(int l,int r,int x,int fr,int ba)
    	{
    		if(fr>ba||l>ba||r<fr)	return 0;
    		if(l>=fr&&r<=ba)	return nodes[x].val;
    		else
    		{
    			int mid=(l+r)>>1;
    			turn(x,l,r);
    			return find(l,mid,x<<1,fr,ba)+find(mid+1,r,x<<1|1,fr,ba);
    		}
    	}
    	void modify(int x,LL val)
    	{
    		if(rtnow==x)	ins(1,n,1,1,n,val);
    		else if(check(rtnow,x))	ins(1,n,1,indfn[x],outdfn[x],val);
    		else
    		{
    			int tmp=getkth(rtnow,dep[rtnow]-dep[x]-1);
    			ins(1,n,1,1,indfn[tmp]-1,val);
    			ins(1,n,1,outdfn[tmp]+1,n,val);
    		}
    	}
    }lrt;
    struct LinkCutTree
    {
    	#define wis(x) (nodes[nodes[x].fa].ch[1]==(x))
    	#define isrt(x) ((nodes[nodes[x].fa].ch[0]^(x))&&(nodes[nodes[x].fa].ch[1]^(x)))
    	struct node
    	{
    		int ch[2],fa;
    		bool rev;
    	}nodes[100010];
    	void turn_down(int x)
    	{
    		if(nodes[x].rev)
    		{
    			swap(nodes[x].ch[0],nodes[x].ch[1]);
    			if(nodes[x].ch[0])	nodes[nodes[x].ch[0]].rev^=1;
    			if(nodes[x].ch[1])	nodes[nodes[x].ch[1]].rev^=1;
    			nodes[x].rev=0;
    		}
    	}
    	void turn_whole(int x)
    	{
    		if(!isrt(x))	turn_whole(nodes[x].fa);
    		turn_down(x);
    	}
    	void rotate(int x)
    	{
    		int f=nodes[x].fa,ff=nodes[f].fa,t=wis(x);
    		nodes[x].fa=ff;
    		if(!isrt(f))	nodes[ff].ch[wis(f)]=x;
    		nodes[f].ch[t]=nodes[x].ch[t^1];
    		nodes[nodes[x].ch[t^1]].fa=f;
    		nodes[x].ch[t^1]=f;
    		nodes[f].fa=x;
    	}
    	void splay(int x)
    	{
    		turn_whole(x);
    		while(!isrt(x))
    		{
    			int f=nodes[x].fa;
    			if(!isrt(f))	rotate((wis(x)^wis(f))?x:f);
    			rotate(x);
    		}
    	}
    	int findleft(int x)
    	{
    		turn_down(x);
    		while(nodes[x].ch[0])	x=nodes[x].ch[0],turn_down(x);
    		return x;
    	}
    	void access(int x)
    	{
    		for(int y=0;x;y=x,x=nodes[x].fa)
    		{
    			splay(x);
    			if(nodes[x].ch[1])	lrt.modify(findleft(nodes[x].ch[1]),1);
    			if(y)	lrt.modify(findleft(y),-1);
    			nodes[x].ch[1]=y;
    		}
    	}
    	void makert(int x){access(x),splay(x),nodes[x].rev^=1;}
    }lct;
    char opt[20];
    int opx;
    template<typename T>
    void read(T &hhh)
    {
    	T x=0,f=1;
    	char c=getchar();
    	while(c<'0'||c>'9')
    	{
    		if(c=='-')	f=-1;
    		c=getchar();
    	}
    	while(c>='0'&&c<='9')	x=(x<<3)+(x<<1)+(c^'0'),c=getchar();
    	if(~f)	hhh=x;
    	else	hhh=-x;
    }
    int main()
    {
    	read(n),read(m);
    	for(int i=1,x,y;i<n;++i)
    	{
    		read(x),read(y);
    		e[x].emplace_back(y);
    		e[y].emplace_back(x);
    	}
    	dfs(1,0);
    	for(int i=1;i<=n;++i)	lrt.ins(1,n,1,indfn[i],indfn[i],dep[i]),lct.nodes[i].fa=fa[i][0];
    	while(m--)
    	{
    		scanf("%s",opt),read(opx);
    		if(strcmp(opt,"RELEASE")==0)	lct.access(opx);
    		else if(strcmp(opt,"RECENTER")==0)	lct.makert(opx),rtnow=opx;
    		else
    		{
    			if(rtnow==opx)	printf("%.10f
    ",double(lrt.find(1,n,1,1,n))/n);
    			else if(check(rtnow,opx))	printf("%.10f
    ",double(lrt.find(1,n,1,indfn[opx],outdfn[opx]))/(outdfn[opx]-indfn[opx]+1));
    			else
    			{
    				int tmp=getkth(rtnow,dep[rtnow]-dep[opx]-1);
    				printf("%.10f
    ",double(lrt.find(1,n,1,1,indfn[tmp]-1)+lrt.find(1,n,1,outdfn[tmp]+1,n))/(indfn[tmp]+n-outdfn[tmp]-1));
    			}
    		}
    	}
    	return 0;
    }
    
  • 相关阅读:
    《SPFA算法的优化及应用》——姜碧野(学习笔记)
    hdu 4691 Front compression
    hdu 4690 EBCDIC
    UVA 11478 Halum(用bellman-ford解差分约束)
    UVA 11090 Going in Cycle!!(二分答案+判负环)
    UVA 10537 The Toll! Revisited uva1027 Toll(最短路+数学坑)
    hdu 4674 Trip Advisor(缩点+倍增lca)
    canny算子原理
    二值图像连通区域标记
    C++全局变量的声明和定义
  • 原文地址:https://www.cnblogs.com/orchid-any/p/14488092.html
Copyright © 2011-2022 走看看