zoukankan      html  css  js  c++  java
  • hdu 1059 Dividing

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 19391    Accepted Submission(s): 5446


    Problem Description
    Marsha and Bill own a collection of marbles. They want to split the collection among themselves so that both receive an equal share of the marbles. This would be easy if all the marbles had the same value, because then they could just split the collection in half. But unfortunately, some of the marbles are larger, or more beautiful than others. So, Marsha and Bill start by assigning a value, a natural number between one and six, to each marble. Now they want to divide the marbles so that each of them gets the same total value.
    Unfortunately, they realize that it might be impossible to divide the marbles in this way (even if the total value of all marbles is even). For example, if there are one marble of value 1, one of value 3 and two of value 4, then they cannot be split into sets of equal value. So, they ask you to write a program that checks whether there is a fair partition of the marbles.
     
    Input
    Each line in the input describes one collection of marbles to be divided. The lines consist of six non-negative integers n1, n2, ..., n6, where ni is the number of marbles of value i. So, the example from above would be described by the input-line ``1 0 1 2 0 0''. The maximum total number of marbles will be 20000.

    The last line of the input file will be ``0 0 0 0 0 0''; do not process this line.
     
    Output
    For each colletcion, output ``Collection #k:'', where k is the number of the test case, and then either ``Can be divided.'' or ``Can't be divided.''.

    Output a blank line after each test case.
     
    Sample Input
    1 0 1 2 0 0
    1 0 0 0 1 1
    0 0 0 0 0 0
     
    Sample Output
    Collection #1:
    Can't be divided. Collection #2: Can be divided.
     
    Source
     思路:之前还没看多重背包,就直接把每种物品分为 (背包大小/费用)件,然,我们并不用把每种物品分为费用和权值都相同的多件,为尽量减少分的件数,可每件的费用为 c[i]×2^k, 价值为 w[i]×2^k .......n[i] - 2^k + 1, 如n[i] = 13 时, 可分为 1 , 2,  4,  6  作为系数分别乘以 c[i],  w[i]
     1 #include <cstdio>
     2 #include <cstring>
     3 #include <queue>
     4 #include <iostream>
     5 #include <cmath>
     6 #include <algorithm>
     7 using namespace std ;
     8 int dp[65000] ;
     9 int r[10] ;
    10 int sum, num ;
    11 int c = 1 ;
    12 void _zeroone(int c, int w)//0-1背包处理单件物品
    13 {
    14     for(int i = sum; i >= c; --i)
    15         dp[i] = max(dp[i], dp[i - c] + w) ;
    16 }
    17 void _compl(int c, int w)//完全背包处理单件物品
    18 {
    19     for(int i = c; i <= sum; ++i)
    20         dp[i] = max(dp[i], dp[i - c] + w) ;
    21 }
    22 void  _mult(int c, int w, int amount)
    23 {
    24     if(c * amount >= sum) { _compl(c, w) ; return ; }//满足条件时,该件物品可以直接当完全背包时的单件物品处理
    25     int k = 1 ;
    26     while(k < amount)//二进制分解
    27     {
    28         _zeroone(c * k,w * k) ;
    29         amount -= k ;
    30         k = k * 2 ;
    31     }
    32     _zeroone(amount * c, amount * w) ;
    33 }
    34 int main()
    35 {
    36     while(1)
    37     {
    38         memset(dp, 0, sizeof dp) ;
    39         sum = 0 ;
    40         int flag = 0 ;
    41         for(int i = 1; i <= 6; ++i){
    42             scanf("%d",&r[i]) ;
    43             if(r[i] != 0) flag = 1 ;
    44             sum += i * r[i] ;
    45         }
    46         if(!flag) break ;
    47         printf("Collection #%d:
    ",c++) ;
    48         if(sum & 1) { printf("Can't be divided.
    
    ") ; continue ;}
    49         sum /= 2 ;
    50         for(int i = 1; i <= 6; ++i)//将多重背包每件分开转换为完全背包或0-1背包中的单件物品处理
    51         _mult(i,i,r[i]) ;
    52         if(dp[sum] == sum ) printf("Can be divided.
    ") ;
    53         else printf("Can't be divided.
    ") ;
    54         printf("
    ") ;
    55     }
    56     return 0 ;
    57 }
    View Code
     
  • 相关阅读:
    HGOI20180822 五校联考卷
    HGOI20180817 (NOIP模拟Day1 task)
    HGOI2010816 (NOIP 提高组模拟赛 day1)
    HGOI20180815 (NOIP 提高组模拟赛 day2)
    HGOI20180814 (NOIP 模拟Day1)
    HGOI20180813 (NOIP2018 提高组 Day2 模拟试题)
    小工具
    HGOI20180812 (NOIP2018 提高组 Day1 模拟试题)
    浅谈高斯消元
    浅谈线性基
  • 原文地址:https://www.cnblogs.com/orchidzjl/p/4507704.html
Copyright © 2011-2022 走看看