You are given three n × n matrices A, B and C. Does the equation A × B = C hold true?
Input
The first line of input contains a positive integer n (n ≤ 500) followed by the the three matrices A, B and C respectively. Each matrix's description is a block of n × n integers.
It guarantees that the elements of A and B are less than 100 in absolute value and elements of C are less than 10,000,000 in absolute value.
Output
Output "YES" if the equation holds true, otherwise "NO".
Sample Input
2 1 0 2 3 5 1 0 8 5 1 10 26
Sample Output
YES
Hint
Multiple inputs will be tested. So O(n 3) algorithm will get TLE.
题解:
给你三个n*n的矩阵A、B、C,问你A*B是不是等于C。数据保证O(n^3)铁定超时,因此你需要想一个不用把A和B乘起来就可以验证的算法。一个基于概率的算法是随机生成一个n乘1的矩阵R,然后判断A*B*R是否等于C*R,而前者相当于A*(B*R),与后者一样都可以在O(n^2)的时间里算出来。如果算出来的结果相等,几乎可以肯定A*B和C也是相等的。
C++:
#include<iostream> #include<ctime> #include<cstring> #include<cstdio> #include<cstdlib> using namespace std; const int maxn=505; int r[maxn],A[maxn][maxn],B[maxn][maxn],C[maxn][maxn],rA[maxn],rAB[maxn],rC[maxn]; int n; void input(int mat[maxn][maxn]) { for(int i=0;i<n;i++) for(int j=0;j<n;j++) scanf("%d",&mat[i][j]); } bool check() { for(int j=0;j<n;j++) for(int i=0;i<n;i++) { rA[j]+=r[i]*A[i][j]; rC[j]+=r[i]*C[i][j]; } for(int j=0;j<n;j++) for(int i=0;i<n;i++) rAB[j]+=rA[i]*B[i][j]; for(int i=0;i<n;i++) if(rAB[i]!=rC[i]) return false; return true; } int main() { cin>>n; srand(time(NULL)); input(A); input(B); input(C); for(int i=0;i<n;i++) r[i]=rand()%99+1; if(check()) cout<<"YES"<<endl; else cout<<"NO"<<endl; return 0; }