zoukankan      html  css  js  c++  java
  • Aizu

    A rooted binary tree is a tree with a root node in which every node has at most two children.

    Your task is to write a program which reads a rooted binary tree T and prints the following information for each node u of T:

    • node ID of u
    • parent of u
    • sibling of u
    • the number of children of u
    • depth of u
    • height of u
    • node type (root, internal node or leaf)

    If two nodes have the same parent, they are siblings. Here, if u and v have the same parent, we say u is a sibling of v (vice versa).

    The height of a node in a tree is the number of edges on the longest simple downward path from the node to a leaf.

    Here, the given binary tree consists of n nodes and evey node has a unique ID from 0 to n-1.

    Input

    The first line of the input includes an integer n, the number of nodes of the tree.

    In the next n lines, the information of each node is given in the following format:

    id left right

    id is the node ID, left is ID of the left child and right is ID of the right child. If the node does not have the left (right) child, the left(right) is indicated by -1.

    Output

    Print the information of each node in the following format:

    node id: parent = p , sibling = s , degree = deg, depth = dep, height = htype

    p is ID of its parent. If the node does not have a parent, print -1.

    s is ID of its sibling. If the node does not have a sibling, print -1.

    degdep and h are the number of children, depth and height of the node respectively.

    type is a type of nodes represented by a string (root, internal node or leaf. If the root can be considered as a leaf or an internal node, print root.

    Please follow the format presented in a sample output below.

    Constraints

    • 1 ≤ n ≤ 25

    Sample Input 1

    9
    0 1 4
    1 2 3
    2 -1 -1
    3 -1 -1
    4 5 8
    5 6 7
    6 -1 -1
    7 -1 -1
    8 -1 -1
    

    Sample Output 1

    node 0: parent = -1, sibling = -1, degree = 2, depth = 0, height = 3, root
    node 1: parent = 0, sibling = 4, degree = 2, depth = 1, height = 1, internal node
    node 2: parent = 1, sibling = 3, degree = 0, depth = 2, height = 0, leaf
    node 3: parent = 1, sibling = 2, degree = 0, depth = 2, height = 0, leaf
    node 4: parent = 0, sibling = 1, degree = 2, depth = 1, height = 2, internal node
    node 5: parent = 4, sibling = 8, degree = 2, depth = 2, height = 1, internal node
    node 6: parent = 5, sibling = 7, degree = 0, depth = 3, height = 0, leaf
    node 7: parent = 5, sibling = 6, degree = 0, depth = 3, height = 0, leaf
    node 8: parent = 4, sibling = 5, degree = 0, depth = 2, height = 0, leaf
    #include <iostream>
    #include <algorithm>
    using namespace std;
    const int maxn=100;
    const int NIL=-1;
    struct Node
    {
        int par,left,right;
    };
    Node T[maxn];
    int D[maxn],H[maxn];
    void setDepth(int u,int d)//求结点的深度
    {
        if(u==NIL)
            return ;
        D[u]=d;
        setDepth(T[u].left,d+1);
        setDepth(T[u].right,d+1);
    }
    int setHeight(int u)//结点的高
    {
        int h1=0,h2=0;
        if(T[u].left!=NIL)
            h1=setHeight(T[u].left)+1;
        if(T[u].right!=NIL)
            h2=setHeight(T[u].right)+1;
        return H[u]=h1>h2?h1:h2;
    }
    int getSibling(int u)//返回兄弟结点
    {
        if(T[u].par==NIL)
            return NIL;
        if(T[T[u].par].left!=u&&T[T[u].par].left!=NIL)
            return T[T[u].par].left;
        if(T[T[u].par].right!=u&&T[T[u].par].right!=NIL)
            return T[T[u].par].right;
        return NIL;
    }
    void print(int u)
    {
        cout<<"node "<<u<<": ";
        cout<<"parent = "<<T[u].par<<", ";
        cout<< "sibling = " <<getSibling(u)<<", ";
        int deg=0;
        if(T[u].left!=NIL)
            deg++;
        if(T[u].right!=NIL)
            deg++;
        cout<<"degree = "<<deg<<", ";
        cout<<"depth = "<<D[u]<<", ";
        cout<<"height = "<<H[u]<<", ";
        if(T[u].par==NIL)
            cout<<"root"<<endl;
        else if(T[u].left==NIL&&T[u].right==NIL)
            cout<<"leaf"<<endl;
        else
            cout<<"internal node"<<endl;
    }
    int main()
    {
        int n;
        cin>>n;
        for(int i=0;i<n;i++)
            T[i].par=NIL;
        for(int i=0;i<n;i++)
        {
            int v,l,r;
            cin>>v>>l>>r;
            T[v].left=l;
            T[v].right=r;
            if(l!=NIL)
                T[l].par=v;
            if(r!=NIL)
                T[r].par=v;
        }  
        int root=0;
        for(int i=0;i<n;i++)
            if(T[i].par==NIL)
                root=i;  
        setDepth(root,0);
        setHeight(root);
        for(int i=0;i<n;i++)
            print(i);
        return 0;
    }

  • 相关阅读:
    整除
    奇怪的生日礼物
    欧拉函数平方和
    奇怪的生日礼物(数论基础)
    整除(简单数论)
    Tarjan求割点
    构造双连通(tarjan)
    次小生成树
    机器扫边
    最短路径(树形DP)
  • 原文地址:https://www.cnblogs.com/orion7/p/7522763.html
Copyright © 2011-2022 走看看