zoukankan      html  css  js  c++  java
  • Aizu

    Binary trees are defined recursively. A binary tree T is a structure defined on a finite set of nodes that either

    • contains no nodes, or
    • is composed of three disjoint sets of nodes:
      - a root node.
      - a binary tree called its left subtree.
      - a binary tree called its right subtree.

    Your task is to write a program which perform tree walks (systematically traverse all nodes in a tree) based on the following algorithms:

    1. Print the root, the left subtree and right subtree (preorder).
    2. Print the left subtree, the root and right subtree (inorder).
    3. Print the left subtree, right subtree and the root (postorder).

    Here, the given binary tree consists of n nodes and evey node has a unique ID from 0 to n-1.

    Input

    The first line of the input includes an integer n, the number of nodes of the tree.

    In the next n linen, the information of each node is given in the following format:

    id left right

    id is the node ID, left is ID of the left child and right is ID of the right child. If the node does not have the left (right) child, the left(right) is indicated by -1

    Output

    In the 1st line, print "Preorder", and in the 2nd line print a list of node IDs obtained by the preorder tree walk.

    In the 3rd line, print "Inorder", and in the 4th line print a list of node IDs obtained by the inorder tree walk.

    In the 5th line, print "Postorder", and in the 6th line print a list of node IDs obtained by the postorder tree walk.

    Print a space character before each node ID.

    Constraints

    • 1 ≤ n ≤ 25

    Sample Input 1

    9
    0 1 4
    1 2 3
    2 -1 -1
    3 -1 -1
    4 5 8
    5 6 7
    6 -1 -1
    7 -1 -1
    8 -1 -1
    

    Sample Output 1

    Preorder
     0 1 2 3 4 5 6 7 8
    Inorder
     2 1 3 0 6 5 7 4 8
    Postorder
     2 3 1 6 7 5 8 4 0
    
     

    Reference

    Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The MIT Press.

    二叉树的遍历。

    1.按照根节点、左子树、右子树的顺序输出结点编号。这称为树的前序遍历。

    2.按照左子树、根节点、右子树的顺序输出结点编号。这称为树的中序遍历。

    3.按照左子树、右子树、根节点的顺序输出结点编号。这称为树的后序遍历。

    #include<iostream>
    #include<algorithm>
    using namespace std;
    const int maxn=1000,NIL=-1;
    struct Node
    {
        int l,r,p;
    }T[maxn];
    void preParse(int u)//前序遍历
    {
        if(u==NIL)
            return ;
        cout<<" "<<u;
        preParse(T[u].l);
        preParse(T[u].r);
    }
    void inParse(int u)//中序遍历
    {
        if(u==NIL)
            return ;
        inParse(T[u].l);
        cout<<" "<<u;
        inParse(T[u].r);
    }
    void postParse(int u)//后序遍历
    {
        if(u==NIL)
            return ;
        postParse(T[u].l);
        postParse(T[u].r);
        cout<<" "<<u;
    }
    int main()
    {
        int n;
        cin>>n;
        for(int i=0;i<n;i++)
            T[i].p=NIL;
        for(int i=0;i<n;i++)
        {
            int v,l,r;
            cin>>v>>l>>r;
            T[v].l=l;
            T[v].r=r;
            if(l!=NIL)
                T[l].p=v;
            if(r!=NIL)
                T[r].p=v;
        }
        int root;
        for(int i=0;i<n;i++)
            if(T[i].p==NIL)
                root=i;
        cout<<"Preorder
    ";
        preParse(root);
        cout<<endl;
        cout<<"Inorder
    ";
        inParse(root);
        cout<<endl;
        cout<<"Postorder
    ";
        postParse(root);
        cout<<endl;
        return 0;
    }
  • 相关阅读:
    oracle 物化视图导入导出报错
    算法导论------------桶排序算法之研究
    实现一个做双向NAT的虚拟网卡
    合理的keyword密度散布与黑帽SEO之躲藏文本
    Java发送Email
    ubuntu系统下设置静态IP
    Design Pattern Iterator 迭代器设计模式
    概率论高速学习03:概率公理补充
    鄂尔多斯
    衬衫面料品牌:Alumo_衬衫_男装_男装:衬衫、法式衬衫、袖扣领带、西服西裤等男士正装服饰-仕族官网
  • 原文地址:https://www.cnblogs.com/orion7/p/7531688.html
Copyright © 2011-2022 走看看