zoukankan      html  css  js  c++  java
  • POJ 3304 Segments(线的相交判断)

    Description

    Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments on it, all projected segments have at least one point in common.

    Input

    Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing a positive integer n ≤ 100 showing the number of segments. After that, n lines containing four real numbers x1 y1 x2 y2 follow, in which (x1y1) and (x2y2) are the coordinates of the two endpoints for one of the segments.

    Output

    For each test case, your program must output "Yes!", if a line with desired property exists and must output "No!" otherwise. You must assume that two floating point numbers a and b are equal if |a -b| < 10-8.

    题目大意:给n条线段,问是否存在一条直线穿过所有线段

    思路:题目本身没什么难度,就是枚举所有穿过线段端点的直线即可,难是难在精度的控制。第一个要注意的地方是n=1的时候要特判,第二个要注意的是如果两点过于接近是不能作为枚举直线的,因为这样算出来的叉积过小,很容易小于EPS。注意这两点就没什么大问题了。

    #include <cstdio>
    #include <cmath>
    
    #define EPS 1e-10
    #define Abs(x) x>0?x:-x
    
    typedef double TYPE;
    //2D point
    struct Point {
        TYPE x, y;
        Point() {}
        Point(double xx, double yy): x(xx), y(yy) {};
    
        bool operator < (const Point &B) const {
            if(x == B.x) return y < B.y;
            else return x < B.x;
        }
    };
    //if return>0 then a is on the clockwise of b
    TYPE cross(const Point &a, const Point &b, const Point &o) {
        return (o.x - a.x) * (o.y - b.y) - (o.x - b.x) * (o.y - a.y);
    }
    //distance between a and b
    inline double dist(Point a, Point b){
        double x = a.x - b.x, y = a.y - b.y;
        return sqrt(x * x + y * y);
    }
    //2D twp-point form segment
    struct Seg {
        Point st, ed;
        Seg() {}
        Seg(Point aa, Point bb):st(aa), ed(bb) {}
    };
    //if a straddle b
    inline bool straddle(const Seg &A, const Seg &B) {
        return cross(B.st, A.st, B.ed) * cross(B.st, A.ed, B.ed) < EPS;
    }
    
    #define MAXN 110
    
    int T, n;
    Seg sg[MAXN];
    
    inline bool check(Seg p) {
        if(dist(p.st, p.ed) < EPS) return false;
        for(int i = 0; i < n; ++i)
            if(!straddle(sg[i], p)) return false;
        return true;
    }
    
    bool solve() {
        for(int i = 0; i < n; ++i) for(int j = i+1; j < n; ++j) {
            if(check(Seg(sg[i].st, sg[j].st))) return true;
            if(check(Seg(sg[i].st, sg[j].ed))) return true;
            if(check(Seg(sg[i].ed, sg[j].st))) return true;
            if(check(Seg(sg[i].ed, sg[j].ed))) return true;
        }
        return false;
    }
    
    int main() {
        scanf("%d", &T);
        while(T--) {
            scanf("%d", &n);
            for(int i = 0; i < n; ++i) scanf("%lf%lf%lf%lf", &sg[i].st.x, &sg[i].st.y, &sg[i].ed.x, &sg[i].ed.y);
            if(n == 1 || solve()) puts("Yes!");
            else puts("No!");
        }
    }
    

      

  • 相关阅读:
    司马光 王安石
    辛弃疾
    伯仲叔季
    三国时代
    西汉 东汉 三国(曹魏 蜀汉 东吴)
    数量关系练习题
    为什么不推荐使用外键约束
    Google Map API申请
    Android传感器——加速度传感器
    第三届空间信息智能服务研讨会
  • 原文地址:https://www.cnblogs.com/oyking/p/3189886.html
Copyright © 2011-2022 走看看