zoukankan      html  css  js  c++  java
  • HDU 4717 The Moving Points(三分法)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)

    Description

    There are N points in total. Every point moves in certain direction and certain speed. We want to know at what time that the largest distance between any two points would be minimum. And also, we require you to calculate that minimum distance. We guarantee that no two points will move in exactly same speed and direction.
     

    Input

    The rst line has a number T (T <= 10) , indicating the number of test cases.  For each test case, first line has a single number N (N <= 300), which is the number of points.  For next N lines, each come with four integers X i, Y i, VX i and VY i (-10 6 <= X i, Y i <= 10 6, -10 2 <= VX i , VY i <= 10 2), (X i, Y i) is the position of the i th point, and (VX i , VY i) is its speed with direction. That is to say, after 1 second, this point will move to (X i + VX i , Y i + VY i).
     

    Output

    For test case X, output "Case #X: " first, then output two numbers, rounded to 0.01, as the answer of time and distance.

    题目大意:平面上n个点定向移动,问何时这n个点之间的最远距离最短,距离是多少。

    思路:三分时间。

    代码(1406MS):

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <cmath>
     4 #include <iostream>
     5 #include <algorithm>
     6 using namespace std;
     7 
     8 const double EPS = 1e-4;
     9 const int MAXN = 310;
    10 
    11 struct Point {
    12     double x, y;
    13     Point(double x = 0, double y = 0): x(x), y(y) {}
    14     void read() {
    15         scanf("%lf%lf", &x, &y);
    16     }
    17     Point operator * (const double &rhs) const {
    18         return Point(x * rhs, y * rhs);
    19     }
    20     Point operator + (const Point &rhs) const {
    21         return Point(x + rhs.x, y + rhs.y);
    22     }
    23     Point operator - (const Point &rhs) const {
    24         return Point(x - rhs.x, y - rhs.y);
    25     }
    26 };
    27 
    28 inline double dist(const Point &a, const Point &b) {
    29     Point t(a - b);
    30     return sqrt(t.x * t.x + t.y * t.y);
    31 }
    32 
    33 Point a[MAXN], v[MAXN];
    34 int n, T;
    35 
    36 double maxlen(double t) {
    37     double ans = 0;
    38     for(int i = 0; i < n; ++i)
    39         for(int j = i + 1; j < n; ++j)
    40             ans = max(ans, dist(a[i] + v[i] * t, a[j] + v[j] * t));
    41     return ans;
    42 }
    43 
    44 int main() {
    45     scanf("%d", &T);
    46     for(int t = 1; t <= T; ++t) {
    47         scanf("%d", &n);
    48         for(int i = 0; i < n; ++i) a[i].read(), v[i].read();
    49         double l = 0, r = 1e8;
    50         while(l + EPS < r) {
    51             double m1 = l + (r - l) / 3;
    52             double m2 = r - (r - l) / 3;
    53             if(maxlen(m1) < maxlen(m2)) r = m2;
    54             else l = m1;
    55         }
    56         printf("Case #%d: %.2f %.2f
    ", t, l, maxlen(l));
    57     }
    58 }
    View Code
  • 相关阅读:
    Laravel 初始化
    ant design pro 左上角 logo 修改
    请求到服务端后是怎么处理的
    Websocket 知识点
    王道数据结构 (7) KMP 算法
    王道数据结构 (6) 简单的模式匹配算法
    王道数据结构 (4) 单链表 删除节点
    王道数据结构 (3) 单链表 插入节点
    王道数据结构 (2) 单链表 尾插法
    王道数据结构 (1) 单链表 头插法
  • 原文地址:https://www.cnblogs.com/oyking/p/3318155.html
Copyright © 2011-2022 走看看