zoukankan      html  css  js  c++  java
  • POJ 2826 An Easy Problem? 判断线段相交

    POJ 2826 An Easy Problem?! -- 思路来自kuangbin博客

    下面三种情况比较特殊,特别是第三种

    G++怎么交都是WA,同样的代码C++A了

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    
    const double eps = 1e-8;
    const double PI = acos(-1.0);
    const double INF = 1e5;
    
    int sgn(double x)
    {
        if(fabs(x) < eps) return 0;
        return x < 0 ? -1:1;
    }
    
    struct Point
    {
        double x,y;
        Point() {}
        Point(double _x,double _y)
        {
            x = _x,y = _y;
        }
        Point operator -(const Point &b)const
        {
            return Point(x - b.x,y - b.y);
        }
        //叉积
        double operator ^(const Point &b)const
        {
            return x*b.y - y*b.x;
        }
        //点积
        double operator *(const Point &b)const
        {
            return x*b.x + y*b.y;
        }
    };
    
    struct Line
    {
        Point p,q;
        Line() {};
        Line(Point _p,Point _q)
        {
            p = _p,q = _q;
        }
        //两直线相交求交点
        //第一个值为0表示直线重合,为1表示平行,为2表示相交
        //只有第一个值为2时,交点才有意义
        pair<int,Point> operator &(const Line &b)const
        {
            Point res = p;
            if(sgn((p-q)^(b.p-b.q)) == 0)
            {
                if(sgn((p-b.q)^(b.p-b.q)) == 0)
                    return make_pair(0,res);//重合
                else return make_pair(1,res);//平行
            }
            double t = ((p-b.p)^(b.p-b.q))/((p-q)^(b.p-b.q));
            res.x += (q.x-p.x)*t;
            res.y += (q.y-p.y)*t;
            return make_pair(2,res);
        }
    };
    
    //*判断线段相交
    bool inter(Line l1,Line l2)
    {
        return
            max(l1.p.x,l1.q.x) >= min(l2.p.x,l2.q.x) &&
            max(l2.p.x,l2.q.x) >= min(l1.p.x,l1.q.x) &&
            max(l1.p.y,l1.q.y) >= min(l2.p.y,l2.q.y) &&
            max(l2.p.y,l2.q.y) >= min(l1.p.y,l1.q.y) &&
            sgn((l2.p-l1.q)^(l1.p-l1.q))*sgn((l2.q-l1.q)^(l1.p-l1.q)) <= 0 &&
            sgn((l1.p-l2.q)^(l2.p-l2.q))*sgn((l1.q-l2.q)^(l2.p-l2.q)) <= 0;
    }
    
    Point pot[105],peg;
    double rad;
    
    int main()
    {
    //    freopen("in.txt","r",stdin);
        int t;
        double x1,y1,x2,y2;
        scanf("%d",&t);
        while(t--)
        {
            scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
            Line L1=Line(Point(x1,y1),Point(x2,y2));
            scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
            Line L2=Line(Point(x1,y1),Point(x2,y2));
            if(sgn(L1.p.y - L1.q.y)==0 || sgn(L2.p.y - L2.q.y)==0)
            {
                puts("0.00");
                continue;
            }
            if(!inter(L1,L2))
            {
                puts("0.00");
                continue;
            }
            if(sgn(L1.p.y - L1.q.y) < 0) swap(L1.p,L1.q);
            if(sgn(L2.p.y - L2.q.y) < 0) swap(L2.p,L2.q);
            if(inter(Line(L1.p,Point(L1.p.x,INF)),L2))
            {
                puts("0.00");
                continue;
            }
            if(inter(Line(L2.p,Point(L2.p.x,INF)),L1))
            {
                puts("0.00");
                continue;
            }
            pair<int,Point> pr=L1 & L2;
            Point cp=pr.second;
            pr=Line(L1.p,Point(INF,L1.p.y)) & L2;
            double ans=fabs((L1.p-cp)^(pr.second-cp))/2;
            pr=Line(L2.p,Point(INF,L2.p.y)) & L1;
            ans=min(ans,fabs((L2.p-cp)^(pr.second-cp))/2);
            printf("%.2lf
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    windows系统-web渗透工具-AWVS
    PHP.9-HTML+CSS(三)-CSS样式
    PHP.10-PHP实例(一)-简单的计算器
    PHP.8-HTML+CSS(二)-HTML详解
    PHP.7-HTML+CSS(一)-HTML语法、常用字符实体、颜色代码
    noip2018 铺设道路
    noip2018游记
    luogu题解P1967货车运输--树链剖分
    ZROI-Day2比赛解题报告
    ZROI Day1 比赛解题报告
  • 原文地址:https://www.cnblogs.com/pach/p/7220927.html
Copyright © 2011-2022 走看看