zoukankan      html  css  js  c++  java
  • 【PAT】1029. Median (25)

    Given an increasing sequence S of N integers, the median is the number at the middle position. For example, the median of S1={11, 12, 13, 14} is 12, and the median of S2={9, 10, 15, 16, 17} is 15. The median of two sequences is defined to be the median of the nondecreasing sequence which contains all the elements of both sequences. For example, the median of S1 and S2 is 13.

    Given two increasing sequences of integers, you are asked to find their median.

    Input

    Each input file contains one test case. Each case occupies 2 lines, each gives the information of a sequence. For each sequence, the first positive integer N (<=1000000) is the size of that sequence. Then N integers follow, separated by a space. It is guaranteed that all the integers are in the range of long int.

    Output

    For each test case you should output the median of the two given sequences in a line.

    Sample Input
    4 11 12 13 14
    5 9 10 15 16 17
    
    Sample Output
    13
    


    分析:寻找中位数。一开始用sort来进行排序后找出中位数,但是这样会有两组数据超时。所以只能进行逐一比较。


    代码:

    #include<iostream>
    #include<vector>
    #include<algorithm>
    using namespace std;
    int main()
    {	
    	int n;
    	long t;
    	int i;
    
    	scanf("%d",&n);
    	vector<long> vec1(n);
    	for(i=0; i<n; i++)
    		scanf("%ld",&vec1[i]);
    
    	scanf("%d",&n);
    	vector<long> vec2(n);
    	for(i=0; i<n; i++)
    		scanf("%ld",&vec2[i]);
    
    	int j,temp = 0;
    	long v;
    	vector<long> result;
    
    	for(i=0,j=0; i<vec1.size() && j<vec2.size(); )
    	{
    		if(vec1[i] <= vec2[j]){
    			v = vec1[i];
    			i++;			
    		}			
    		else{
    			v = vec2[j];
    			j++;
    		}
    		result.push_back(v);
    		if(result.size() == ( vec1.size() + vec2.size() + 1)/2 ){
    			cout<<result[result.size() - 1]<<endl;
    			break;
    		}
    	}
    
    	if(result.size() != ( vec1.size() + vec2.size() + 1)/2)
    	{
    		while(i<vec1.size())
    		{
    			result.push_back(vec1[i]);
    			if(result.size() == ( vec1.size() + vec2.size() + 1)/2 ){
    				cout<<result[result.size() - 1]<<endl;
    				break;
    			}
    			i++;
    		}
    		while(j<vec2.size())
    		{
    			result.push_back(vec2[j]);
    			if(result.size() == ( vec1.size() + vec2.size() + 1)/2 ){
    				cout<<result[result.size() - 1]<<endl;
    				break;
    			}
    			j++;
    		}
    	}
    	return 0;
    }


  • 相关阅读:
    常用配色方案
    js一个典型的对象写法,推荐使用这种格式,用于处理图像的基本方法、
    jquery 插件开发分析
    理解js 的作用域链 原型链 闭包 词法分析
    根据入栈判断出栈是否合法
    动态规划之数字三角形(三种解法:递归,递推,记忆化搜索)
    memset用法详解
    刘汝佳算法竞赛入门经典中的运算符>?问题
    算法之递推及其应用(递推关系的建立及在信息学竞赛中的应用 安徽 高寒蕊)
    自适应流体布局
  • 原文地址:https://www.cnblogs.com/pangblog/p/3397829.html
Copyright © 2011-2022 走看看