给定一个由 0 和 1 组成的矩阵,找出每个元素到最近的 0 的距离。
两个相邻元素间的距离为 1 。
示例 1:
输入:
0 0 0 0 1 0 0 0 0
输出:
0 0 0 0 1 0 0 0 0
示例 2:
输入:
0 0 0 0 1 0 1 1 1
输出:
0 0 0 0 1 0 1 2 1
注意:
- 给定矩阵的元素个数不超过 10000。
- 给定矩阵中至少有一个元素是 0。
- 矩阵中的元素只在四个方向上相邻: 上、下、左、右。
/* 算法思想: 首先遍历一次矩阵,将值为0的点都存入queue,将值为1的点改为INT_MAX。之前像什么遍历迷宫啊,起点只有一个,而这道题所有为0的点都是起点,这想法,叼!然后开始BFS遍历,从queue中取出一个数字,遍历其周围四个点,如果越界或者周围点的值小于等于当前值,则直接跳过。因为周围点的距离更小的话,就没有更新的必要,否则将周围点的值更新为当前值加1,然后把周围点的坐标加入queue。 */ //算法实现: class Solution { public: vector<vector<int>> updateMatrix(vector<vector<int>>& matrix) { int m = matrix.size(), n = matrix[0].size(); vector<vector<int>> dirs{{0,-1},{-1,0},{0,1},{1,0}}; queue<pair<int, int>> q; for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (matrix[i][j] == 0) q.push({i, j}); else matrix[i][j] = INT_MAX; } } while (!q.empty()) { auto t = q.front(); q.pop(); for (auto dir : dirs) { int x = t.first + dir[0], y = t.second + dir[1]; if (x < 0 || x >= m || y < 0 || y >= n || matrix[x][y] <= matrix[t.first][t.second]) continue; matrix[x][y] = matrix[t.first][t.second] + 1; q.push({x, y}); } } return matrix; } };