zoukankan      html  css  js  c++  java
  • CF1167G Low Budget Inception 题解

    Codeforces
    Luogu

    Description.

    有很多个房子,都是单位正方形,左下角为 \((x_i,0)\),右上角为 \((x_i+1,1)\)
    保证 \(x_i\in\mathbb N\),房子不相交,相邻两个房子距离不超过 \(D\)
    现在有若干个点,问以这若干个点为中心旋转数轴,使得房子不相交、房子不与地面相交。
    能旋转的角度是多少,\(m\) 次询问。

    \(n,m\le 2\times 10^5,D\le 7000\)

    Solution.

    有两种情况

    1. 某个房子撞到了数轴上
    2. 某两个房子互相撞到了

    由于所有房子坐标都是整数,所以 2 情况要求 \(|x+y-2w|\le 1\)
    其中 \(w\) 是查询位置。

    画张图,发现肯定有 \(\vartheta=2\text{atan}(\frac 1{\min(|x-w|,|y-w|)})\)
    情况 1 肯定有 \(\vartheta=\text{atan}(\frac1{|x-w|})\)
    最后肯定是情况 1 2 的最大值。

    首先情况 1 可以通过 \(O(1)\) 的双指针求出。
    此时如果情况 \(2\) 要大于情况 \(1\),必须保证 \(\min(|x-w|,|y-w|)\le 2|x-w|\)
    这个结合 \(\text{atan}\) 的性质就可以推出。
    那也就是说范围不会很大,只可能在 \([x-2d,x+2d]\) 的范围内。

    直接暴扫,复杂度是 \(O(Dm+n)\),勉强能卡过。
    注意这里有一个 Tips:atan2 函数很慢,用他来剪枝不如不用。

    更优美一点的方法就是用一个 bitset 维护前 \(2d\) 位。
    每次指针移动可以直接通过左移、右移操作求出,每次也就会插入 \(O(1)\) 个点。

    然后复杂度就变成了 \(O(\frac D{\omega}m+n)\) 很优美。

    Coding.

    点击查看代码
    //Coded by leapfrog on 2021.10.27 {{{
    //是啊,你就是那只鬼了,所以被你碰到以后,就轮到我变成鬼了
    #include<bits/stdc++.h>
    using namespace std;typedef long long ll;
    template<typename T>inline void read(T &x)
    {
    	x=0;char c=getchar(),f=0;
    	for(;c<48||c>57;c=getchar()) if(!(c^45)) f=1;
    	for(;c>=48&&c<=57;c=getchar()) x=(x<<1)+(x<<3)+(c^48);
    	f?x=-x:x;
    }
    template<typename T,typename...L>inline void read(T &x,L&...l) {read(x),read(l...);}//}}}
    #pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
    #pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
    const int N=200005;const double Pi=acos(-1);
    int n,D,a[N],m,pos=0;
    int main()
    {
    	read(n,D);for(int i=1;i<=n;i++) read(a[i]);
    	read(m);for(int i=1,x;i<=m;i++)
    	{
    		read(x);while(pos<n&&a[pos+1]<x) pos++;
    		if(a[pos]==x-1&&a[pos+1]==x) {printf("%.15lf\n",Pi);continue;}
    		if(a[pos]==x-1||a[pos+1]==x) {printf("%.15lf\n",Pi/2);continue;}
    		int lim=(min(a[pos+1]-x,x-a[pos]-1)+5)*4,pl=pos,pr=pos+1;double rs=0;
    		if(pos) rs=max(rs,atan2(1.0,x-a[pos]-1));
    		if(pos!=n) rs=max(rs,atan2(1.0,a[pos+1]-x));
    		while(pr<=n&&pl>=1&&a[pr]-a[pl]<=lim)
    		{
    			int d1=a[pr]-x,d2=x-a[pl]-1;
    			if(abs(d1-d2)<=1) {rs=max(rs,atan2(1.0,max(d1,d2))*2);break;}
    			if(d1<d2) pr++;else pl--;
    		}printf("%.15lf\n",rs);
    	}return 0;
    }
    
  • 相关阅读:
    HDU 3085 Nightmare Ⅱ[双向广搜]
    HDU 4028 The time of a day [离散化DP]
    HDU4027 Can you answer these queries? [线段树]
    HDU 4331 Image Recognition [边上全为1构成的正方形个数]
    HDU4026 Unlock the Cell Phone [状态压缩DP]
    HDU 4333 Revolving Digits [扩展KMP]
    HDU4335 What is N? [数论(欧拉函数)]
    工程与管理
    项目管理笔记一
    通过100个单词掌握英语语法(七)ask
  • 原文地址:https://www.cnblogs.com/pealfrog/p/15473167.html
Copyright © 2011-2022 走看看