zoukankan      html  css  js  c++  java
  • Sum of Digits is Prime

    Sum of Digits is Prime

    August 19, 2014

    For an integer $qgeqslant2$ let $s_q(n)$ denote the $q$-ary sum-of-digits function of a non-negative integer $n$, that is, if $n$ is given by its $q$-ary digits expansion $n=sumlimits_{k=0}^{r} a_k q^{k}$ with digits $a_kin{0,1,ldots,q-1}$ and $a_r eq0$, then
    [s_q(n)=sum_{k=0}^{r} a_k.]

    As usual we write $phi(n)$ for Euler's totient function, and $pi(x)$ for the number of primes up to $x$. We recall the prime    number theorem in the form

    egin{equation}pi(x)=frac{x}{log x}+Oleft(frac{x}{(log x)^2} ight).end{equation}

    Theorem (Drmota/Mauduit/Rivat)    We have uniformly for all integers $kgeqslant 0$ with $(k,q-1)=1$,

    egin{equation}label{eq:2}#{pleqslant x:s_q(p)=k}=frac{q-1}{phi(q)}frac{pi(x)}{sqrt{22pisigma_{q}^{2}log_q x}}left(expleft(-frac{(k-mu_qlog_q x)^2}{2sigma_{q}^{2}log_q x} ight)+Oig((log x)^{-1/2+varepsilon}ig) ight),end{equation}

    where $varepsilon>0$ is arbitrary but fixed, and $mu_q:=frac{q-1}{2}$, $sigma_{q}^{2}:=frac{q^2-1}{12}$.

    From the above result we can deduce some very interesting corollaries. Clearly, eqref{eq:2} shows that every sufficiently large integer is the sum of digits of a prime number. So, in particular, there are infinitely many primes whose sum of digits is   also prime. Also, every sufficiently large prime is the sum of digits of another prime which in turn is the sum of digits of another prime, and so on.

    References

    1. C. Mauduit and J. Rivat, Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Ann. of Math. 171 (2010), 1591–1646.
    2. Glyn Harman, Counting Primes whose Sum of Digits is Prime, Journal of Integer Sequences, Vol. 15 (2012), Article 12.2.2.
  • 相关阅读:
    [codeforces contest 1119 F] Niyaz and Small Degrees 解题报告 (树形DP+堆)
    [牛客挑战赛 30D] 小A的昆特牌 解题报告 (组合数学)
    [jzoj 6073] 河 解题报告 (DP)
    Ant Design Pro的windows10安装
    .Net Core在类库中使用当前HttpContext
    .NetCore多文件上传进度的示例
    简单实现上传文件进度条
    动态导入Js文件
    AutoMapper在asp.netcore中的使用
    Asp.Net Core通过HttpStatusCode状态处理响应结果
  • 原文地址:https://www.cnblogs.com/pengdaoyi/p/4279375.html
Copyright © 2011-2022 走看看