zoukankan      html  css  js  c++  java
  • Sum of Digits is Prime

    Sum of Digits is Prime

    August 19, 2014

    For an integer $qgeqslant2$ let $s_q(n)$ denote the $q$-ary sum-of-digits function of a non-negative integer $n$, that is, if $n$ is given by its $q$-ary digits expansion $n=sumlimits_{k=0}^{r} a_k q^{k}$ with digits $a_kin{0,1,ldots,q-1}$ and $a_r eq0$, then
    [s_q(n)=sum_{k=0}^{r} a_k.]

    As usual we write $phi(n)$ for Euler's totient function, and $pi(x)$ for the number of primes up to $x$. We recall the prime    number theorem in the form

    egin{equation}pi(x)=frac{x}{log x}+Oleft(frac{x}{(log x)^2} ight).end{equation}

    Theorem (Drmota/Mauduit/Rivat)    We have uniformly for all integers $kgeqslant 0$ with $(k,q-1)=1$,

    egin{equation}label{eq:2}#{pleqslant x:s_q(p)=k}=frac{q-1}{phi(q)}frac{pi(x)}{sqrt{22pisigma_{q}^{2}log_q x}}left(expleft(-frac{(k-mu_qlog_q x)^2}{2sigma_{q}^{2}log_q x} ight)+Oig((log x)^{-1/2+varepsilon}ig) ight),end{equation}

    where $varepsilon>0$ is arbitrary but fixed, and $mu_q:=frac{q-1}{2}$, $sigma_{q}^{2}:=frac{q^2-1}{12}$.

    From the above result we can deduce some very interesting corollaries. Clearly, eqref{eq:2} shows that every sufficiently large integer is the sum of digits of a prime number. So, in particular, there are infinitely many primes whose sum of digits is   also prime. Also, every sufficiently large prime is the sum of digits of another prime which in turn is the sum of digits of another prime, and so on.

    References

    1. C. Mauduit and J. Rivat, Sur un problème de Gelfond: la somme des chiffres des nombres premiers, Ann. of Math. 171 (2010), 1591–1646.
    2. Glyn Harman, Counting Primes whose Sum of Digits is Prime, Journal of Integer Sequences, Vol. 15 (2012), Article 12.2.2.
  • 相关阅读:
    字体
    当前li的同级且不包含当前li
    溢出用省略号显示
    .NET Core中使用Cookie步骤
    .NET Core中使用Session步骤
    asp.net core 读取配置
    Asp.Net Core run on Ubuntu
    .net core中使用GB2312编码
    ubuntu mysql 安装
    samba的安装
  • 原文地址:https://www.cnblogs.com/pengdaoyi/p/4279375.html
Copyright © 2011-2022 走看看