Problem Statement
There are NN pieces of sushi. Each piece has two parameters: "kind of topping" titi and "deliciousness" didi. You are choosing KK among these NN pieces to eat. Your "satisfaction" here will be calculated as follows:
- The satisfaction is the sum of the "base total deliciousness" and the "variety bonus".
- The base total deliciousness is the sum of the deliciousness of the pieces you eat.
- The variety bonus is x∗xx∗x, where xx is the number of different kinds of toppings of the pieces you eat.
You want to have as much satisfaction as possible. Find this maximum satisfaction.
Constraints
- 1≤K≤N≤1051≤K≤N≤105
- 1≤ti≤N1≤ti≤N
- 1≤di≤1091≤di≤109
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
NN KK t1t1 d1d1 t2t2 d2d2 .. .. .. tNtN dNdN
Output
Print the maximum satisfaction that you can obtain.
Sample Input 1 Copy
5 3 1 9 1 7 2 6 2 5 3 1
Sample Output 1 Copy
26
If you eat Sushi 1,21,2 and 33:
- The base total deliciousness is 9+7+6=229+7+6=22.
- The variety bonus is 2∗2=42∗2=4.
Thus, your satisfaction will be 2626, which is optimal.
Sample Input 2 Copy
7 4 1 1 2 1 3 1 4 6 4 5 4 5 4 5
Sample Output 2 Copy
25
It is optimal to eat Sushi 1,2,31,2,3 and 44.
Sample Input 3 Copy
6 5 5 1000000000 2 990000000 3 980000000 6 970000000 6 960000000 4 950000000
Sample Output 3 Copy
4900000016
Note that the output may not fit into a 3232-bit integer type.
题意:给定N个结构体,每一个结构体有两个信息,分别是type 和 x,让你从中选出K个结构体,使之type的类型数的平方+sum{ xi } 最大。
思路:【贪心】将X从大到小排序,然后按顺序取前K个,在取前K个过程中,将已经出现的类型放入栈中。然后,开始遍历K+1----N的元素,使得不断加入没有出现的元素的类型。在此过程中通过弹栈更新最值。
AC代码:
1 #include<bits/stdc++.h> 2 3 using namespace std; 4 #define int long long 5 #define N 150000 6 struct str{ 7 int x,y; 8 }st[N]; 9 bool cmp(str a,str b){ 10 return a.y>b.y; 11 } 12 map<int,int> mp; 13 stack<int> s; 14 signed main(){ 15 int n,k; 16 cin>>n>>k; 17 for(int i=1;i<=n;i++){ 18 cin>>st[i].x>>st[i].y; 19 } 20 sort(st+1,st+1+n,cmp); 21 int maxn=0; 22 int type=0; 23 int sum=0; 24 for(int i=1;i<=k;i++){ 25 if(!mp[st[i].x]){ 26 mp[st[i].x]=1; 27 type++; 28 }else{ 29 s.push(st[i].y); 30 } 31 sum+=st[i].y; 32 maxn=max(maxn,type*type+sum); 33 } 34 for(int i=k+1;i<=n;i++){ 35 if(s.empty()) 36 break; 37 if(mp[st[i].x]) 38 continue; 39 mp[st[i].x]=1; 40 type++; 41 sum-=s.top(); 42 s.pop(); 43 sum+=st[i].y; 44 maxn=max(maxn,type*type+sum); 45 } 46 cout<<maxn; 47 return 0; 48 }