zoukankan      html  css  js  c++  java
  • keras遇到bert实战一(bert实现分类)

    说明:最近一直在做关系抽取的任务,此次仅仅是记录一个实用的简单示例

    参考https://www.cnblogs.com/jclian91/p/12301056.html

    参考https://blog.csdn.net/asialee_bird/article/details/102747435

    import pandas as pd
    import codecs, gc
    import numpy as np
    from sklearn.model_selection import KFold
    from keras_bert import load_trained_model_from_checkpoint, Tokenizer
    from keras.metrics import top_k_categorical_accuracy
    from keras.layers import *
    from keras.callbacks import *
    from keras.models import Model
    import keras.backend as K
    from keras.optimizers import Adam
    from keras.utils import to_categorical
    
    # 读取训练集和测试集
    train_df = pd.read_csv(r'D:Program FilesFileRecv情感分析数据集/data_train.csv', sep='	', names=['id', 'type', 'contents', 'labels']).astype(str)
    test_df = pd.read_csv(r'D:Program FilesFileRecv情感分析数据集/data_test.csv', sep='	', names=['id', 'type', 'contents']).astype(str)
    train_df = train_df[:200]
    test_df = test_df[:20]
    
    maxlen = 100  # 设置序列长度为120,要保证序列长度不超过512
    
    # 预训练好的模型
    config_path = r'C:UsersDownloadschinese_L-12_H-768_A-12/bert_config.json'
    checkpoint_path = r'C:UsersDownloadschinese_L-12_H-768_A-12/bert_model.ckpt'
    dict_path = r'C:UsersDownloadschinese_L-12_H-768_A-12/vocab.txt'
    
    # 将词表中的词编号转换为字典
    token_dict = {}
    with codecs.open(dict_path, 'r', 'utf8') as reader:
        for line in reader:
            token = line.strip()
            token_dict[token] = len(token_dict)
    
    
    # 重写tokenizer
    class OurTokenizer(Tokenizer):
        def _tokenize(self, text):
            R = []
            for c in text:
                if c in self._token_dict:
                    R.append(c)
                elif self._is_space(c):
                    R.append('[unused1]')  # 用[unused1]来表示空格类字符
                else:
                    R.append('[UNK]')  # 不在列表的字符用[UNK]表示
            return R
    
    
    tokenizer = OurTokenizer(token_dict)
    
    
    # 让每条文本的长度相同,用0填充
    def seq_padding(X, padding=0):
        L = [len(x) for x in X]
        ML = max(L)
        return np.array([
            np.concatenate([x, [padding] * (ML - len(x))]) if len(x) < ML else x for x in X
        ])
    
    
    # data_generator只是一种为了节约内存的数据方式
    class data_generator:
        def __init__(self, data, batch_size=32, shuffle=True):
            self.data = data
            self.batch_size = batch_size
            self.shuffle = shuffle
            self.steps = len(self.data) // self.batch_size
            if len(self.data) % self.batch_size != 0:
                self.steps += 1
    
        def __len__(self):
            return self.steps
    
        def __iter__(self):
            while True:
                idxs = list(range(len(self.data)))
    
                if self.shuffle:
                    np.random.shuffle(idxs)
    
                X1, X2, Y = [], [], []
                for i in idxs:
                    d = self.data[i]
                    text = d[0][:maxlen]
                    x1, x2 = tokenizer.encode(first=text)
                    y = d[1]
                    X1.append(x1)
                    X2.append(x2)
                    Y.append([y])
                    if len(X1) == self.batch_size or i == idxs[-1]:
                        X1 = seq_padding(X1)
                        X2 = seq_padding(X2)
                        Y = seq_padding(Y)
                        yield [X1, X2], Y[:, 0, :]
                        [X1, X2, Y] = [], [], []
    
    
    # 计算top-k正确率,当预测值的前k个值中存在目标类别即认为预测正确
    def acc_top2(y_true, y_pred):
        return top_k_categorical_accuracy(y_true, y_pred, k=2)
    
    
    # bert模型设置
    def build_bert(nclass):
        bert_model = load_trained_model_from_checkpoint(config_path, checkpoint_path, seq_len=None)  # 加载预训练模型
    
        for l in bert_model.layers:
            l.trainable = True
    
        x1_in = Input(shape=(None,))
        x2_in = Input(shape=(None,))
    
        x = bert_model([x1_in, x2_in])
        x = Lambda(lambda x: x[:, 0])(x)  # 取出[CLS]对应的向量用来做分类
        p = Dense(nclass, activation='softmax')(x)
    
        model = Model([x1_in, x2_in], p)
        model.compile(loss='categorical_crossentropy',
                      optimizer=Adam(1e-5),  # 用足够小的学习率
                      metrics=['accuracy', acc_top2])
        print(model.summary())
        return model
    
    
    # 训练数据、测试数据和标签转化为模型输入格式
    DATA_LIST = []
    for data_row in train_df.iloc[:].itertuples():
        DATA_LIST.append((data_row.contents, to_categorical(data_row.labels, 3)))
    DATA_LIST = np.array(DATA_LIST)
    
    DATA_LIST_TEST = []
    for data_row in test_df.iloc[:].itertuples():
        DATA_LIST_TEST.append((data_row.contents, to_categorical(0, 3)))
    DATA_LIST_TEST = np.array(DATA_LIST_TEST)
    
    
    # 交叉验证训练和测试模型
    def run_cv(nfold, data, data_labels, data_test):
        kf = KFold(n_splits=nfold, shuffle=True, random_state=520).split(data)
        train_model_pred = np.zeros((len(data), 3))
        test_model_pred = np.zeros((len(data_test), 3))
    
        for i, (train_fold, test_fold) in enumerate(kf):
            X_train, X_valid, = data[train_fold, :], data[test_fold, :]
    
            model = build_bert(3)
            early_stopping = EarlyStopping(monitor='val_acc', patience=3)  # 早停法,防止过拟合
            plateau = ReduceLROnPlateau(monitor="val_acc", verbose=1, mode='max', factor=0.5,
                                        patience=2)  # 当评价指标不在提升时,减少学习率
            checkpoint = ModelCheckpoint('./bert_dump/' + str(i) + '.hdf5', monitor='val_acc', verbose=2,
                                         save_best_only=True, mode='max', save_weights_only=True)  # 保存最好的模型
    
            train_D = data_generator(X_train, shuffle=True)
            valid_D = data_generator(X_valid, shuffle=True)
            test_D = data_generator(data_test, shuffle=False)
            # 模型训练
            model.fit_generator(
                train_D.__iter__(),
                steps_per_epoch=len(train_D),
                epochs=5,
                validation_data=valid_D.__iter__(),
                validation_steps=len(valid_D),
                callbacks=[early_stopping, plateau, checkpoint],
            )
    
            # model.load_weights('./bert_dump/' + str(i) + '.hdf5')
    
            # return model
            train_model_pred[test_fold, :] = model.predict_generator(valid_D.__iter__(), steps=len(valid_D), verbose=1)
            test_model_pred += model.predict_generator(test_D.__iter__(), steps=len(test_D), verbose=1)
    
            del model
            gc.collect()  # 清理内存
            K.clear_session()  # clear_session就是清除一个session
            # break
    
        return train_model_pred, test_model_pred
    
    
    # n折交叉验证
    train_model_pred, test_model_pred = run_cv(2, DATA_LIST, None, DATA_LIST_TEST)
    
    test_pred = [np.argmax(x) for x in test_model_pred]
    
    # 将测试集预测结果写入文件
    output = pd.DataFrame({'id': test_df.id, 'sentiment': test_pred})
    output.to_csv('results.csv', index=None)
     
  • 相关阅读:
    java-学习8
    java-学习7
    java-学习6
    html----h1-6标签
    jquery.cookie介绍和用法
    java-学习5
    java-学习4
    Eclipse里的代码光标变成一个黑色块
    java-学习3(jdk-环境配置)
    箭头函数无法使用this的解决方法
  • 原文地址:https://www.cnblogs.com/pergrand/p/12970942.html
Copyright © 2011-2022 走看看