zoukankan      html  css  js  c++  java
  • WGS84,GCJ02, BD09坐标转换

     1 public class Gps
     2     {
     3 
     4         private double wgLat;
     5         private double wgLon;
     6 
     7         public Gps(double wgLat, double wgLon)
     8         {
     9             setWgLat(wgLat);
    10             setWgLon(wgLon);
    11         }
    12 
    13         public double getWgLat()
    14         {
    15             return wgLat;
    16         }
    17 
    18         public void setWgLat(double wgLat)
    19         {
    20             this.wgLat = wgLat;
    21         }
    22 
    23         public double getWgLon()
    24         {
    25             return wgLon;
    26         }
    27 
    28         public void setWgLon(double wgLon)
    29         {
    30             this.wgLon = wgLon;
    31         }
    32 
    33         public String toString()
    34         {
    35             return wgLat + "," + wgLon;
    36         }
    37     }
      1 public class PositionUtil {  
      2       
      3     public static String BAIDU_LBS_TYPE = "bd09ll";  
      4       
      5     public static double pi = 3.1415926535897932384626;  
      6     public static double a = 6378245.0;  
      7     public static double ee = 0.00669342162296594323;  
      8   
      9     /** 
     10      * 84 to 火星坐标系 (GCJ-02) World Geodetic System ==> Mars Geodetic System 
     11      *  
     12      * @param lat 
     13      * @param lon 
     14      * @return 
     15      */  
     16     public static Gps gps84_To_Gcj02(double lat, double lon) {  
     17         if (outOfChina(lat, lon)) {  
     18             return null;  
     19         }  
     20         double dLat = transformLat(lon - 105.0, lat - 35.0);  
     21         double dLon = transformLon(lon - 105.0, lat - 35.0);  
     22         double radLat = lat / 180.0 * pi;  
     23         double magic = Math.Sin(radLat);  
     24         magic = 1 - ee * magic * magic;  
     25         double sqrtMagic = Math.Sqrt(magic);  
     26         dLat = (dLat * 180.0) / ((a * (1 - ee)) / (magic * sqrtMagic) * pi);  
     27         dLon = (dLon * 180.0) / (a / sqrtMagic * Math.Cos(radLat) * pi);  
     28         double mgLat = lat + dLat;  
     29         double mgLon = lon + dLon;  
     30         return new Gps(mgLat, mgLon);  
     31     }  
     32   
     33     /** 
     34      * * 火星坐标系 (GCJ-02) to 84 * * @param lon * @param lat * @return 
     35      * */  
     36     public static Gps gcj_To_Gps84(double lat, double lon) {  
     37         Gps gps = transform(lat, lon);  
     38         double lontitude = lon * 2 - gps.getWgLon();  
     39         double latitude = lat * 2 - gps.getWgLat();  
     40         return new Gps(latitude, lontitude);  
     41     }  
     42   
     43     /** 
     44      * 火星坐标系 (GCJ-02) 与百度坐标系 (BD-09) 的转换算法 将 GCJ-02 坐标转换成 BD-09 坐标 
     45      *  
     46      * @param gg_lat 
     47      * @param gg_lon 
     48      */  
     49     public static Gps gcj02_To_Bd09(double gg_lat, double gg_lon) {  
     50         double x = gg_lon, y = gg_lat;  
     51         double z = Math.Sqrt(x * x + y * y) + 0.00002 * Math.Sin(y * pi);  
     52         double theta = Math.Atan2(y, x) + 0.000003 * Math.Cos(x * pi);  
     53         double bd_lon = z * Math.Cos(theta) + 0.0065;  
     54         double bd_lat = z * Math.Sin(theta) + 0.006;  
     55         return new Gps(bd_lat, bd_lon);  
     56     }  
     57   
     58     /** 
     59      * * 火星坐标系 (GCJ-02) 与百度坐标系 (BD-09) 的转换算法 * * 将 BD-09 坐标转换成GCJ-02 坐标 * * @param 
     60      * bd_lat * @param bd_lon * @return 
     61      */  
     62     public static Gps bd09_To_Gcj02(double bd_lat, double bd_lon) {  
     63         double x = bd_lon - 0.0065, y = bd_lat - 0.006;  
     64         double z = Math.Sqrt(x * x + y * y) - 0.00002 * Math.Sin(y * pi);  
     65         double theta = Math.Atan2(y, x) - 0.000003 * Math.Cos(x * pi);  
     66         double gg_lon = z * Math.Cos(theta);  
     67         double gg_lat = z * Math.Sin(theta);  
     68         return new Gps(gg_lat, gg_lon);  
     69     }  
     70   
     71     /** 
     72      * (BD-09)-->84 
     73      * @param bd_lat 
     74      * @param bd_lon 
     75      * @return 
     76      */  
     77     public static Gps bd09_To_Gps84(double bd_lat, double bd_lon) {  
     78   
     79         Gps gcj02 = PositionUtil.bd09_To_Gcj02(bd_lat, bd_lon);  
     80         Gps map84 = PositionUtil.gcj_To_Gps84(gcj02.getWgLat(),  
     81                 gcj02.getWgLon());  
     82         return map84;  
     83   
     84     }  
     85   
     86     public static bool outOfChina(double lat, double lon) {  
     87         if (lon < 72.004 || lon > 137.8347)  
     88             return true;  
     89         if (lat < 0.8293 || lat > 55.8271)  
     90             return true;  
     91         return false;  
     92     }  
     93   
     94     public static Gps transform(double lat, double lon) {  
     95         if (outOfChina(lat, lon)) {  
     96             return new Gps(lat, lon);  
     97         }  
     98         double dLat = transformLat(lon - 105.0, lat - 35.0);  
     99         double dLon = transformLon(lon - 105.0, lat - 35.0);  
    100         double radLat = lat / 180.0 * pi;  
    101         double magic = Math.Sin(radLat);  
    102         magic = 1 - ee * magic * magic;  
    103         double sqrtMagic = Math.Sqrt(magic);  
    104         dLat = (dLat * 180.0) / ((a * (1 - ee)) / (magic * sqrtMagic) * pi);  
    105         dLon = (dLon * 180.0) / (a / sqrtMagic * Math.Cos(radLat) * pi);  
    106         double mgLat = lat + dLat;  
    107         double mgLon = lon + dLon;  
    108         return new Gps(mgLat, mgLon);  
    109     }  
    110   
    111     public static double transformLat(double x, double y) {  
    112         double ret = -100.0 + 2.0 * x + 3.0 * y + 0.2 * y * y + 0.1 * x * y  
    113                 + 0.2 * Math.Sqrt(Math.Abs(x));  
    114         ret += (20.0 * Math.Sin(6.0 * x * pi) + 20.0 * Math.Sin(2.0 * x * pi)) * 2.0 / 3.0;  
    115         ret += (20.0 * Math.Sin(y * pi) + 40.0 * Math.Sin(y / 3.0 * pi)) * 2.0 / 3.0;  
    116         ret += (160.0 * Math.Sin(y / 12.0 * pi) + 320 * Math.Sin(y * pi / 30.0)) * 2.0 / 3.0;  
    117         return ret;  
    118     }  
    119   
    120     public static double transformLon(double x, double y) {  
    121         double ret = 300.0 + x + 2.0 * y + 0.1 * x * x + 0.1 * x * y + 0.1  
    122                 * Math.Sqrt(Math.Abs(x));
    123         ret += (20.0 * Math.Sin(6.0 * x * pi) + 20.0 * Math.Sin(2.0 * x * pi)) * 2.0 / 3.0;
    124         ret += (20.0 * Math.Sin(x * pi) + 40.0 * Math.Sin(x / 3.0 * pi)) * 2.0 / 3.0;
    125         ret += (150.0 * Math.Sin(x / 12.0 * pi) + 300.0 * Math.Sin(x / 30.0  
    126                 * pi)) * 2.0 / 3.0;  
    127         return ret;  
    128     }  
    129   
    130 }  
  • 相关阅读:
    1571:【例 3】凸多边形的划分
    1570:【例 2】能量项链
    2.25
    2.24 T2 牧场 by greens 1s 128M (pasture.cpp)
    2.24 T1 P3515 [POI2011]Lightning Conductor
    白嫖视频的方法
    2.24 T3 P1912 [NOI2009] 诗人小G
    2.24
    斜率优化
    windy数的补充——数位dp中如何求[a,b]区间内的方案数
  • 原文地址:https://www.cnblogs.com/peter-pu/p/5630424.html
Copyright © 2011-2022 走看看