zoukankan      html  css  js  c++  java
  • Mahout分步式程序开发 聚类Kmeans(转)

    Mahout分步式程序开发 聚类Kmeans

    Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等。

    从2011年开始,中国进入大数据风起云涌的时代,以Hadoop为代表的家族软件,占据了大数据处理的广阔地盘。开源界及厂商,所有数据软件,无一不向Hadoop靠拢。Hadoop也从小众的高富帅领域,变成了大数据开发的标准。在Hadoop原有技术基础之上,出现了Hadoop家族产品,通过“大数据”概念不断创新,推出科技进步。

    作为IT界的开发人员,我们也要跟上节奏,抓住机遇,跟着Hadoop一起雄起!

    关于作者:

    • 张丹(Conan), 程序员Java,R,PHP,Javascript
    • weibo:@Conan_Z
    • blog: http://blog.fens.me
    • email: bsspirit@gmail.com

    转载请注明出处:
    http://blog.fens.me/hadoop-mahout-kmeans/

    mahout-kmeans

    前言

    Mahout是基于Hadoop用于机器学习的程序开发框架,Mahout封装了3大类的机器学习算法,其中包括聚类算法。kmeans是我们经常会提到用到的聚类算法之一,特别处理未知数据集的时,都会先聚类一下,看看数据集会有一些什么样的规则。

    本文主要讲解,基于Mahout程序开发,实现分步式的kmeans算法。

    目录

    1. 聚类算法kmeans
    2. Mahout开发环境介绍
    3. 用Mahout实现聚类算法kmeans
    4. 用R语言可视化结果
    5. 模板项目上传github

    1. 聚类算法kmeans

    聚类分析是数据挖掘及机器学习领域内的重点问题之一,在数据挖掘、模式识别、决策支持、机器学习及图像分割等领域有广泛的应用,是最重要的数据分析方法之一。聚类是在给定的数据集合中寻找同类的数据子集合,每一个子集合形成一个类簇,同类簇中的数据具有更大的相似性。聚类算法大体上可分为基于划分的方法、基于层次的方法、基于密度的方法、基于网格的方法以及基于模型的方法。

    k-means algorithm算法是一种得到最广泛使用的基于划分的聚类算法,把n个对象分为k个簇,以使簇内具有较高的相似度。相似度的计算根据一个簇中对象的平均值来进行。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。

    算法首先随机地选择k个对象,每个对象初始地代表了一个簇的平均值或中心。对剩余的每个对象根据其与各个簇中心的距离,将它赋给最近的簇,然后重新计算每个簇的平均值。这个过程不断重复,直到准则函数收敛。

    kmeans介绍摘自:http://zh.wikipedia.org/wiki/K平均算法

    2. Mahout开发环境介绍

    接上一篇文章:Mahout分步式程序开发 基于物品的协同过滤ItemCF

    所有环境变量 和 系统配置 与上文一致!

    3. 用Mahout实现聚类算法kmeans

    实现步骤:

    • 1. 准备数据文件: randomData.csv
    • 2. Java程序:KmeansHadoop.java
    • 3. 运行程序
    • 4. 聚类结果解读
    • 5. HDFS产生的目录

    1). 准备数据文件: randomData.csv
    数据文件randomData.csv,由R语言通过“随机正太分布函数”程序生成,单机内存实验请参考文章:
    用Maven构建Mahout项目

    原始数据文件:这里只截取了一部分数据。

    
    ~ vi datafile/randomData.csv
    
    -0.883033363823402 -3.31967192630249
    -2.39312626419456 3.34726861118871
    2.66976353341256 1.85144276077058
    -1.09922906899594 -6.06261735207489
    -4.36361936997216 1.90509905380532
    -0.00351835125495037 -0.610105996559153
    -2.9962958796338 -3.60959839525735
    -3.27529418132066 0.0230099799641799
    2.17665594420569 6.77290756817957
    -2.47862038335637 2.53431833167278
    5.53654901906814 2.65089785582474
    5.66257474538338 6.86783609641077
    -0.558946883114376 1.22332819416237
    5.11728525486132 3.74663871584768
    1.91240516693351 2.95874731384062
    -2.49747101306535 2.05006504756875
    3.98781883213459 1.00780938946366
    5.47470532716682 5.35084411045171
    

    注:由于Mahout中kmeans算法,默认的分融符是” “(空格),因些我把逗号分隔的数据文件,改成以空格分隔。

    2). Java程序:KmeansHadoop.java

    kmeans的算法实现,请查看Mahout in Action。

    mahout-kmeans-process

    
    package org.conan.mymahout.cluster08;
    
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.mapred.JobConf;
    import org.apache.mahout.clustering.conversion.InputDriver;
    import org.apache.mahout.clustering.kmeans.KMeansDriver;
    import org.apache.mahout.clustering.kmeans.RandomSeedGenerator;
    import org.apache.mahout.common.distance.DistanceMeasure;
    import org.apache.mahout.common.distance.EuclideanDistanceMeasure;
    import org.apache.mahout.utils.clustering.ClusterDumper;
    import org.conan.mymahout.hdfs.HdfsDAO;
    import org.conan.mymahout.recommendation.ItemCFHadoop;
    
    public class KmeansHadoop {
        private static final String HDFS = "hdfs://192.168.1.210:9000";
    
        public static void main(String[] args) throws Exception {
            String localFile = "datafile/randomData.csv";
            String inPath = HDFS + "/user/hdfs/mix_data";
            String seqFile = inPath + "/seqfile";
            String seeds = inPath + "/seeds";
            String outPath = inPath + "/result/";
            String clusteredPoints = outPath + "/clusteredPoints";
    
            JobConf conf = config();
            HdfsDAO hdfs = new HdfsDAO(HDFS, conf);
            hdfs.rmr(inPath);
            hdfs.mkdirs(inPath);
            hdfs.copyFile(localFile, inPath);
            hdfs.ls(inPath);
    
            InputDriver.runJob(new Path(inPath), new Path(seqFile), "org.apache.mahout.math.RandomAccessSparseVector");
    
            int k = 3;
            Path seqFilePath = new Path(seqFile);
            Path clustersSeeds = new Path(seeds);
            DistanceMeasure measure = new EuclideanDistanceMeasure();
            clustersSeeds = RandomSeedGenerator.buildRandom(conf, seqFilePath, clustersSeeds, k, measure);
            KMeansDriver.run(conf, seqFilePath, clustersSeeds, new Path(outPath), measure, 0.01, 10, true, 0.01, false);
    
            Path outGlobPath = new Path(outPath, "clusters-*-final");
            Path clusteredPointsPath = new Path(clusteredPoints);
            System.out.printf("Dumping out clusters from clusters: %s and clusteredPoints: %s
    ", outGlobPath, clusteredPointsPath);
    
            ClusterDumper clusterDumper = new ClusterDumper(outGlobPath, clusteredPointsPath);
            clusterDumper.printClusters(null);
        }
        
        public static JobConf config() {
            JobConf conf = new JobConf(ItemCFHadoop.class);
            conf.setJobName("ItemCFHadoop");
            conf.addResource("classpath:/hadoop/core-site.xml");
            conf.addResource("classpath:/hadoop/hdfs-site.xml");
            conf.addResource("classpath:/hadoop/mapred-site.xml");
            return conf;
        }
    
    }
    

    3). 运行程序
    控制台输出:

    
    Delete: hdfs://192.168.1.210:9000/user/hdfs/mix_data
    Create: hdfs://192.168.1.210:9000/user/hdfs/mix_data
    copy from: datafile/randomData.csv to hdfs://192.168.1.210:9000/user/hdfs/mix_data
    ls: hdfs://192.168.1.210:9000/user/hdfs/mix_data
    ==========================================================
    name: hdfs://192.168.1.210:9000/user/hdfs/mix_data/randomData.csv, folder: false, size: 36655
    ==========================================================
    SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
    SLF4J: Defaulting to no-operation (NOP) logger implementation
    SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
    2013-10-14 15:39:31 org.apache.hadoop.util.NativeCodeLoader 
    警告: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    2013-10-14 15:39:31 org.apache.hadoop.mapred.JobClient copyAndConfigureFiles
    警告: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
    2013-10-14 15:39:31 org.apache.hadoop.mapreduce.lib.input.FileInputFormat listStatus
    信息: Total input paths to process : 1
    2013-10-14 15:39:31 org.apache.hadoop.io.compress.snappy.LoadSnappy 
    警告: Snappy native library not loaded
    2013-10-14 15:39:31 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Running job: job_local_0001
    2013-10-14 15:39:31 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    2013-10-14 15:39:31 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
    2013-10-14 15:39:31 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:31 org.apache.hadoop.mapred.Task commit
    信息: Task attempt_local_0001_m_000000_0 is allowed to commit now
    2013-10-14 15:39:31 org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter commitTask
    信息: Saved output of task 'attempt_local_0001_m_000000_0' to hdfs://192.168.1.210:9000/user/hdfs/mix_data/seqfile
    2013-10-14 15:39:31 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:31 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0001_m_000000_0' done.
    2013-10-14 15:39:32 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息:  map 100% reduce 0%
    2013-10-14 15:39:32 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Job complete: job_local_0001
    2013-10-14 15:39:32 org.apache.hadoop.mapred.Counters log
    信息: Counters: 11
    2013-10-14 15:39:32 org.apache.hadoop.mapred.Counters log
    信息:   File Output Format Counters 
    2013-10-14 15:39:32 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Written=31390
    2013-10-14 15:39:32 org.apache.hadoop.mapred.Counters log
    信息:   File Input Format Counters 
    2013-10-14 15:39:32 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Read=36655
    2013-10-14 15:39:32 org.apache.hadoop.mapred.Counters log
    信息:   FileSystemCounters
    2013-10-14 15:39:32 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_READ=475910
    2013-10-14 15:39:32 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_READ=36655
    2013-10-14 15:39:32 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_WRITTEN=506350
    2013-10-14 15:39:32 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_WRITTEN=68045
    2013-10-14 15:39:32 org.apache.hadoop.mapred.Counters log
    信息:   Map-Reduce Framework
    2013-10-14 15:39:32 org.apache.hadoop.mapred.Counters log
    信息:     Map input records=1000
    2013-10-14 15:39:32 org.apache.hadoop.mapred.Counters log
    信息:     Spilled Records=0
    2013-10-14 15:39:32 org.apache.hadoop.mapred.Counters log
    信息:     Total committed heap usage (bytes)=188284928
    2013-10-14 15:39:32 org.apache.hadoop.mapred.Counters log
    信息:     SPLIT_RAW_BYTES=124
    2013-10-14 15:39:32 org.apache.hadoop.mapred.Counters log
    信息:     Map output records=1000
    2013-10-14 15:39:32 org.apache.hadoop.io.compress.CodecPool getCompressor
    信息: Got brand-new compressor
    2013-10-14 15:39:32 org.apache.hadoop.io.compress.CodecPool getDecompressor
    信息: Got brand-new decompressor
    2013-10-14 15:39:32 org.apache.hadoop.mapred.JobClient copyAndConfigureFiles
    警告: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
    2013-10-14 15:39:32 org.apache.hadoop.mapreduce.lib.input.FileInputFormat listStatus
    信息: Total input paths to process : 1
    2013-10-14 15:39:32 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Running job: job_local_0002
    2013-10-14 15:39:32 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    2013-10-14 15:39:32 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: io.sort.mb = 100
    2013-10-14 15:39:32 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: data buffer = 79691776/99614720
    2013-10-14 15:39:32 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: record buffer = 262144/327680
    2013-10-14 15:39:33 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
    信息: Starting flush of map output
    2013-10-14 15:39:33 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
    信息: Finished spill 0
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0002_m_000000_0 is done. And is in the process of commiting
    2013-10-14 15:39:33 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0002_m_000000_0' done.
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    2013-10-14 15:39:33 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Merger$MergeQueue merge
    信息: Merging 1 sorted segments
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Merger$MergeQueue merge
    信息: Down to the last merge-pass, with 1 segments left of total size: 623 bytes
    2013-10-14 15:39:33 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0002_r_000000_0 is done. And is in the process of commiting
    2013-10-14 15:39:33 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Task commit
    信息: Task attempt_local_0002_r_000000_0 is allowed to commit now
    2013-10-14 15:39:33 org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter commitTask
    信息: Saved output of task 'attempt_local_0002_r_000000_0' to hdfs://192.168.1.210:9000/user/hdfs/mix_data/result/clusters-1
    2013-10-14 15:39:33 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: reduce > reduce
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0002_r_000000_0' done.
    2013-10-14 15:39:33 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息:  map 100% reduce 100%
    2013-10-14 15:39:33 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Job complete: job_local_0002
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Counters log
    信息: Counters: 19
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Counters log
    信息:   File Output Format Counters 
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Written=695
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Counters log
    信息:   FileSystemCounters
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_READ=4239303
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_READ=203963
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_WRITTEN=4457168
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_WRITTEN=140321
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Counters log
    信息:   File Input Format Counters 
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Read=31390
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Counters log
    信息:   Map-Reduce Framework
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Counters log
    信息:     Map output materialized bytes=627
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Counters log
    信息:     Map input records=1000
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Counters log
    信息:     Reduce shuffle bytes=0
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Counters log
    信息:     Spilled Records=6
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Counters log
    信息:     Map output bytes=612
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Counters log
    信息:     Total committed heap usage (bytes)=376569856
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Counters log
    信息:     SPLIT_RAW_BYTES=130
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Counters log
    信息:     Combine input records=0
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Counters log
    信息:     Reduce input records=3
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Counters log
    信息:     Reduce input groups=3
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Counters log
    信息:     Combine output records=0
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Counters log
    信息:     Reduce output records=3
    2013-10-14 15:39:33 org.apache.hadoop.mapred.Counters log
    信息:     Map output records=3
    2013-10-14 15:39:34 org.apache.hadoop.mapred.JobClient copyAndConfigureFiles
    警告: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
    2013-10-14 15:39:34 org.apache.hadoop.mapreduce.lib.input.FileInputFormat listStatus
    信息: Total input paths to process : 1
    2013-10-14 15:39:34 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Running job: job_local_0003
    2013-10-14 15:39:34 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    2013-10-14 15:39:34 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: io.sort.mb = 100
    2013-10-14 15:39:34 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: data buffer = 79691776/99614720
    2013-10-14 15:39:34 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: record buffer = 262144/327680
    2013-10-14 15:39:34 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
    信息: Starting flush of map output
    2013-10-14 15:39:34 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
    信息: Finished spill 0
    2013-10-14 15:39:34 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0003_m_000000_0 is done. And is in the process of commiting
    2013-10-14 15:39:34 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:34 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0003_m_000000_0' done.
    2013-10-14 15:39:34 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    2013-10-14 15:39:34 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:34 org.apache.hadoop.mapred.Merger$MergeQueue merge
    信息: Merging 1 sorted segments
    2013-10-14 15:39:34 org.apache.hadoop.mapred.Merger$MergeQueue merge
    信息: Down to the last merge-pass, with 1 segments left of total size: 677 bytes
    2013-10-14 15:39:34 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:34 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0003_r_000000_0 is done. And is in the process of commiting
    2013-10-14 15:39:34 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:34 org.apache.hadoop.mapred.Task commit
    信息: Task attempt_local_0003_r_000000_0 is allowed to commit now
    2013-10-14 15:39:34 org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter commitTask
    信息: Saved output of task 'attempt_local_0003_r_000000_0' to hdfs://192.168.1.210:9000/user/hdfs/mix_data/result/clusters-2
    2013-10-14 15:39:34 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: reduce > reduce
    2013-10-14 15:39:34 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0003_r_000000_0' done.
    2013-10-14 15:39:35 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息:  map 100% reduce 100%
    2013-10-14 15:39:35 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Job complete: job_local_0003
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Counters log
    信息: Counters: 19
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Counters log
    信息:   File Output Format Counters 
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Written=695
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Counters log
    信息:   FileSystemCounters
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_READ=7527467
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_READ=271193
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_WRITTEN=7901744
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_WRITTEN=142099
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Counters log
    信息:   File Input Format Counters 
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Read=31390
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Counters log
    信息:   Map-Reduce Framework
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Counters log
    信息:     Map output materialized bytes=681
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Counters log
    信息:     Map input records=1000
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Counters log
    信息:     Reduce shuffle bytes=0
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Counters log
    信息:     Spilled Records=6
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Counters log
    信息:     Map output bytes=666
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Counters log
    信息:     Total committed heap usage (bytes)=575930368
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Counters log
    信息:     SPLIT_RAW_BYTES=130
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Counters log
    信息:     Combine input records=0
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Counters log
    信息:     Reduce input records=3
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Counters log
    信息:     Reduce input groups=3
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Counters log
    信息:     Combine output records=0
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Counters log
    信息:     Reduce output records=3
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Counters log
    信息:     Map output records=3
    2013-10-14 15:39:35 org.apache.hadoop.mapred.JobClient copyAndConfigureFiles
    警告: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
    2013-10-14 15:39:35 org.apache.hadoop.mapreduce.lib.input.FileInputFormat listStatus
    信息: Total input paths to process : 1
    2013-10-14 15:39:35 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Running job: job_local_0004
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    2013-10-14 15:39:35 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: io.sort.mb = 100
    2013-10-14 15:39:35 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: data buffer = 79691776/99614720
    2013-10-14 15:39:35 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: record buffer = 262144/327680
    2013-10-14 15:39:35 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
    信息: Starting flush of map output
    2013-10-14 15:39:35 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
    信息: Finished spill 0
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0004_m_000000_0 is done. And is in the process of commiting
    2013-10-14 15:39:35 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0004_m_000000_0' done.
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    2013-10-14 15:39:35 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Merger$MergeQueue merge
    信息: Merging 1 sorted segments
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Merger$MergeQueue merge
    信息: Down to the last merge-pass, with 1 segments left of total size: 677 bytes
    2013-10-14 15:39:35 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0004_r_000000_0 is done. And is in the process of commiting
    2013-10-14 15:39:35 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Task commit
    信息: Task attempt_local_0004_r_000000_0 is allowed to commit now
    2013-10-14 15:39:35 org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter commitTask
    信息: Saved output of task 'attempt_local_0004_r_000000_0' to hdfs://192.168.1.210:9000/user/hdfs/mix_data/result/clusters-3
    2013-10-14 15:39:35 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: reduce > reduce
    2013-10-14 15:39:35 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0004_r_000000_0' done.
    2013-10-14 15:39:36 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息:  map 100% reduce 100%
    2013-10-14 15:39:36 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Job complete: job_local_0004
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Counters log
    信息: Counters: 19
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Counters log
    信息:   File Output Format Counters 
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Written=695
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Counters log
    信息:   FileSystemCounters
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_READ=10815685
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_READ=338143
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_WRITTEN=11346320
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_WRITTEN=143877
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Counters log
    信息:   File Input Format Counters 
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Read=31390
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Counters log
    信息:   Map-Reduce Framework
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Counters log
    信息:     Map output materialized bytes=681
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Counters log
    信息:     Map input records=1000
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Counters log
    信息:     Reduce shuffle bytes=0
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Counters log
    信息:     Spilled Records=6
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Counters log
    信息:     Map output bytes=666
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Counters log
    信息:     Total committed heap usage (bytes)=775290880
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Counters log
    信息:     SPLIT_RAW_BYTES=130
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Counters log
    信息:     Combine input records=0
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Counters log
    信息:     Reduce input records=3
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Counters log
    信息:     Reduce input groups=3
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Counters log
    信息:     Combine output records=0
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Counters log
    信息:     Reduce output records=3
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Counters log
    信息:     Map output records=3
    2013-10-14 15:39:36 org.apache.hadoop.mapred.JobClient copyAndConfigureFiles
    警告: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
    2013-10-14 15:39:36 org.apache.hadoop.mapreduce.lib.input.FileInputFormat listStatus
    信息: Total input paths to process : 1
    2013-10-14 15:39:36 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Running job: job_local_0005
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    2013-10-14 15:39:36 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: io.sort.mb = 100
    2013-10-14 15:39:36 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: data buffer = 79691776/99614720
    2013-10-14 15:39:36 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: record buffer = 262144/327680
    2013-10-14 15:39:36 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
    信息: Starting flush of map output
    2013-10-14 15:39:36 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
    信息: Finished spill 0
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0005_m_000000_0 is done. And is in the process of commiting
    2013-10-14 15:39:36 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0005_m_000000_0' done.
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    2013-10-14 15:39:36 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Merger$MergeQueue merge
    信息: Merging 1 sorted segments
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Merger$MergeQueue merge
    信息: Down to the last merge-pass, with 1 segments left of total size: 677 bytes
    2013-10-14 15:39:36 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0005_r_000000_0 is done. And is in the process of commiting
    2013-10-14 15:39:36 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Task commit
    信息: Task attempt_local_0005_r_000000_0 is allowed to commit now
    2013-10-14 15:39:36 org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter commitTask
    信息: Saved output of task 'attempt_local_0005_r_000000_0' to hdfs://192.168.1.210:9000/user/hdfs/mix_data/result/clusters-4
    2013-10-14 15:39:36 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: reduce > reduce
    2013-10-14 15:39:36 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0005_r_000000_0' done.
    2013-10-14 15:39:37 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息:  map 100% reduce 100%
    2013-10-14 15:39:37 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Job complete: job_local_0005
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Counters log
    信息: Counters: 19
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Counters log
    信息:   File Output Format Counters 
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Written=695
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Counters log
    信息:   FileSystemCounters
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_READ=14103903
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_READ=405093
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_WRITTEN=14790888
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_WRITTEN=145655
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Counters log
    信息:   File Input Format Counters 
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Read=31390
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Counters log
    信息:   Map-Reduce Framework
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Counters log
    信息:     Map output materialized bytes=681
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Counters log
    信息:     Map input records=1000
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Counters log
    信息:     Reduce shuffle bytes=0
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Counters log
    信息:     Spilled Records=6
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Counters log
    信息:     Map output bytes=666
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Counters log
    信息:     Total committed heap usage (bytes)=974651392
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Counters log
    信息:     SPLIT_RAW_BYTES=130
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Counters log
    信息:     Combine input records=0
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Counters log
    信息:     Reduce input records=3
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Counters log
    信息:     Reduce input groups=3
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Counters log
    信息:     Combine output records=0
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Counters log
    信息:     Reduce output records=3
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Counters log
    信息:     Map output records=3
    2013-10-14 15:39:37 org.apache.hadoop.mapred.JobClient copyAndConfigureFiles
    警告: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
    2013-10-14 15:39:37 org.apache.hadoop.mapreduce.lib.input.FileInputFormat listStatus
    信息: Total input paths to process : 1
    2013-10-14 15:39:37 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Running job: job_local_0006
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    2013-10-14 15:39:37 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: io.sort.mb = 100
    2013-10-14 15:39:37 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: data buffer = 79691776/99614720
    2013-10-14 15:39:37 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: record buffer = 262144/327680
    2013-10-14 15:39:37 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
    信息: Starting flush of map output
    2013-10-14 15:39:37 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
    信息: Finished spill 0
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0006_m_000000_0 is done. And is in the process of commiting
    2013-10-14 15:39:37 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0006_m_000000_0' done.
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    2013-10-14 15:39:37 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Merger$MergeQueue merge
    信息: Merging 1 sorted segments
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Merger$MergeQueue merge
    信息: Down to the last merge-pass, with 1 segments left of total size: 677 bytes
    2013-10-14 15:39:37 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0006_r_000000_0 is done. And is in the process of commiting
    2013-10-14 15:39:37 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Task commit
    信息: Task attempt_local_0006_r_000000_0 is allowed to commit now
    2013-10-14 15:39:37 org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter commitTask
    信息: Saved output of task 'attempt_local_0006_r_000000_0' to hdfs://192.168.1.210:9000/user/hdfs/mix_data/result/clusters-5
    2013-10-14 15:39:37 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: reduce > reduce
    2013-10-14 15:39:37 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0006_r_000000_0' done.
    2013-10-14 15:39:38 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息:  map 100% reduce 100%
    2013-10-14 15:39:38 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Job complete: job_local_0006
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Counters log
    信息: Counters: 19
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Counters log
    信息:   File Output Format Counters 
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Written=695
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Counters log
    信息:   FileSystemCounters
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_READ=17392121
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_READ=472043
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_WRITTEN=18235456
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_WRITTEN=147433
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Counters log
    信息:   File Input Format Counters 
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Read=31390
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Counters log
    信息:   Map-Reduce Framework
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Counters log
    信息:     Map output materialized bytes=681
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Counters log
    信息:     Map input records=1000
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Counters log
    信息:     Reduce shuffle bytes=0
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Counters log
    信息:     Spilled Records=6
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Counters log
    信息:     Map output bytes=666
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Counters log
    信息:     Total committed heap usage (bytes)=1174011904
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Counters log
    信息:     SPLIT_RAW_BYTES=130
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Counters log
    信息:     Combine input records=0
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Counters log
    信息:     Reduce input records=3
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Counters log
    信息:     Reduce input groups=3
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Counters log
    信息:     Combine output records=0
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Counters log
    信息:     Reduce output records=3
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Counters log
    信息:     Map output records=3
    2013-10-14 15:39:38 org.apache.hadoop.mapred.JobClient copyAndConfigureFiles
    警告: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
    2013-10-14 15:39:38 org.apache.hadoop.mapreduce.lib.input.FileInputFormat listStatus
    信息: Total input paths to process : 1
    2013-10-14 15:39:38 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Running job: job_local_0007
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    2013-10-14 15:39:38 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: io.sort.mb = 100
    2013-10-14 15:39:38 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: data buffer = 79691776/99614720
    2013-10-14 15:39:38 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: record buffer = 262144/327680
    2013-10-14 15:39:38 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
    信息: Starting flush of map output
    2013-10-14 15:39:38 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
    信息: Finished spill 0
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0007_m_000000_0 is done. And is in the process of commiting
    2013-10-14 15:39:38 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0007_m_000000_0' done.
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    2013-10-14 15:39:38 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Merger$MergeQueue merge
    信息: Merging 1 sorted segments
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Merger$MergeQueue merge
    信息: Down to the last merge-pass, with 1 segments left of total size: 677 bytes
    2013-10-14 15:39:38 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0007_r_000000_0 is done. And is in the process of commiting
    2013-10-14 15:39:38 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Task commit
    信息: Task attempt_local_0007_r_000000_0 is allowed to commit now
    2013-10-14 15:39:38 org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter commitTask
    信息: Saved output of task 'attempt_local_0007_r_000000_0' to hdfs://192.168.1.210:9000/user/hdfs/mix_data/result/clusters-6
    2013-10-14 15:39:38 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: reduce > reduce
    2013-10-14 15:39:38 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0007_r_000000_0' done.
    2013-10-14 15:39:39 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息:  map 100% reduce 100%
    2013-10-14 15:39:39 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Job complete: job_local_0007
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Counters log
    信息: Counters: 19
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Counters log
    信息:   File Output Format Counters 
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Written=695
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Counters log
    信息:   FileSystemCounters
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_READ=20680339
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_READ=538993
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_WRITTEN=21680040
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_WRITTEN=149211
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Counters log
    信息:   File Input Format Counters 
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Read=31390
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Counters log
    信息:   Map-Reduce Framework
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Counters log
    信息:     Map output materialized bytes=681
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Counters log
    信息:     Map input records=1000
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Counters log
    信息:     Reduce shuffle bytes=0
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Counters log
    信息:     Spilled Records=6
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Counters log
    信息:     Map output bytes=666
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Counters log
    信息:     Total committed heap usage (bytes)=1373372416
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Counters log
    信息:     SPLIT_RAW_BYTES=130
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Counters log
    信息:     Combine input records=0
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Counters log
    信息:     Reduce input records=3
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Counters log
    信息:     Reduce input groups=3
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Counters log
    信息:     Combine output records=0
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Counters log
    信息:     Reduce output records=3
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Counters log
    信息:     Map output records=3
    2013-10-14 15:39:39 org.apache.hadoop.mapred.JobClient copyAndConfigureFiles
    警告: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
    2013-10-14 15:39:39 org.apache.hadoop.mapreduce.lib.input.FileInputFormat listStatus
    信息: Total input paths to process : 1
    2013-10-14 15:39:39 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Running job: job_local_0008
    2013-10-14 15:39:39 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    2013-10-14 15:39:39 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: io.sort.mb = 100
    2013-10-14 15:39:39 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: data buffer = 79691776/99614720
    2013-10-14 15:39:39 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: record buffer = 262144/327680
    2013-10-14 15:39:39 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
    信息: Starting flush of map output
    2013-10-14 15:39:40 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
    信息: Finished spill 0
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0008_m_000000_0 is done. And is in the process of commiting
    2013-10-14 15:39:40 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0008_m_000000_0' done.
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    2013-10-14 15:39:40 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Merger$MergeQueue merge
    信息: Merging 1 sorted segments
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Merger$MergeQueue merge
    信息: Down to the last merge-pass, with 1 segments left of total size: 677 bytes
    2013-10-14 15:39:40 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0008_r_000000_0 is done. And is in the process of commiting
    2013-10-14 15:39:40 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Task commit
    信息: Task attempt_local_0008_r_000000_0 is allowed to commit now
    2013-10-14 15:39:40 org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter commitTask
    信息: Saved output of task 'attempt_local_0008_r_000000_0' to hdfs://192.168.1.210:9000/user/hdfs/mix_data/result/clusters-7
    2013-10-14 15:39:40 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: reduce > reduce
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0008_r_000000_0' done.
    2013-10-14 15:39:40 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息:  map 100% reduce 100%
    2013-10-14 15:39:40 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Job complete: job_local_0008
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Counters log
    信息: Counters: 19
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Counters log
    信息:   File Output Format Counters 
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Written=695
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Counters log
    信息:   FileSystemCounters
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_READ=23968557
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_READ=605943
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_WRITTEN=25124624
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_WRITTEN=150989
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Counters log
    信息:   File Input Format Counters 
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Read=31390
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Counters log
    信息:   Map-Reduce Framework
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Counters log
    信息:     Map output materialized bytes=681
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Counters log
    信息:     Map input records=1000
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Counters log
    信息:     Reduce shuffle bytes=0
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Counters log
    信息:     Spilled Records=6
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Counters log
    信息:     Map output bytes=666
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Counters log
    信息:     Total committed heap usage (bytes)=1572732928
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Counters log
    信息:     SPLIT_RAW_BYTES=130
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Counters log
    信息:     Combine input records=0
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Counters log
    信息:     Reduce input records=3
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Counters log
    信息:     Reduce input groups=3
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Counters log
    信息:     Combine output records=0
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Counters log
    信息:     Reduce output records=3
    2013-10-14 15:39:40 org.apache.hadoop.mapred.Counters log
    信息:     Map output records=3
    2013-10-14 15:39:41 org.apache.hadoop.mapred.JobClient copyAndConfigureFiles
    警告: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
    2013-10-14 15:39:41 org.apache.hadoop.mapreduce.lib.input.FileInputFormat listStatus
    信息: Total input paths to process : 1
    2013-10-14 15:39:41 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Running job: job_local_0009
    2013-10-14 15:39:41 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    2013-10-14 15:39:41 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: io.sort.mb = 100
    2013-10-14 15:39:41 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: data buffer = 79691776/99614720
    2013-10-14 15:39:41 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: record buffer = 262144/327680
    2013-10-14 15:39:41 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
    信息: Starting flush of map output
    2013-10-14 15:39:41 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
    信息: Finished spill 0
    2013-10-14 15:39:41 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0009_m_000000_0 is done. And is in the process of commiting
    2013-10-14 15:39:41 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:41 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0009_m_000000_0' done.
    2013-10-14 15:39:41 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    2013-10-14 15:39:41 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:41 org.apache.hadoop.mapred.Merger$MergeQueue merge
    信息: Merging 1 sorted segments
    2013-10-14 15:39:41 org.apache.hadoop.mapred.Merger$MergeQueue merge
    信息: Down to the last merge-pass, with 1 segments left of total size: 677 bytes
    2013-10-14 15:39:41 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:41 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0009_r_000000_0 is done. And is in the process of commiting
    2013-10-14 15:39:41 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:41 org.apache.hadoop.mapred.Task commit
    信息: Task attempt_local_0009_r_000000_0 is allowed to commit now
    2013-10-14 15:39:41 org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter commitTask
    信息: Saved output of task 'attempt_local_0009_r_000000_0' to hdfs://192.168.1.210:9000/user/hdfs/mix_data/result/clusters-8
    2013-10-14 15:39:41 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: reduce > reduce
    2013-10-14 15:39:41 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0009_r_000000_0' done.
    2013-10-14 15:39:42 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息:  map 100% reduce 100%
    2013-10-14 15:39:42 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Job complete: job_local_0009
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Counters log
    信息: Counters: 19
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Counters log
    信息:   File Output Format Counters 
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Written=695
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Counters log
    信息:   FileSystemCounters
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_READ=27256775
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_READ=673669
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_WRITTEN=28569192
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_WRITTEN=152767
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Counters log
    信息:   File Input Format Counters 
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Read=31390
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Counters log
    信息:   Map-Reduce Framework
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Counters log
    信息:     Map output materialized bytes=681
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Counters log
    信息:     Map input records=1000
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Counters log
    信息:     Reduce shuffle bytes=0
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Counters log
    信息:     Spilled Records=6
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Counters log
    信息:     Map output bytes=666
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Counters log
    信息:     Total committed heap usage (bytes)=1772093440
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Counters log
    信息:     SPLIT_RAW_BYTES=130
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Counters log
    信息:     Combine input records=0
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Counters log
    信息:     Reduce input records=3
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Counters log
    信息:     Reduce input groups=3
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Counters log
    信息:     Combine output records=0
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Counters log
    信息:     Reduce output records=3
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Counters log
    信息:     Map output records=3
    2013-10-14 15:39:42 org.apache.hadoop.mapred.JobClient copyAndConfigureFiles
    警告: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
    2013-10-14 15:39:42 org.apache.hadoop.mapreduce.lib.input.FileInputFormat listStatus
    信息: Total input paths to process : 1
    2013-10-14 15:39:42 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Running job: job_local_0010
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    2013-10-14 15:39:42 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: io.sort.mb = 100
    2013-10-14 15:39:42 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: data buffer = 79691776/99614720
    2013-10-14 15:39:42 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: record buffer = 262144/327680
    2013-10-14 15:39:42 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
    信息: Starting flush of map output
    2013-10-14 15:39:42 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
    信息: Finished spill 0
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0010_m_000000_0 is done. And is in the process of commiting
    2013-10-14 15:39:42 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0010_m_000000_0' done.
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    2013-10-14 15:39:42 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Merger$MergeQueue merge
    信息: Merging 1 sorted segments
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Merger$MergeQueue merge
    信息: Down to the last merge-pass, with 1 segments left of total size: 677 bytes
    2013-10-14 15:39:42 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0010_r_000000_0 is done. And is in the process of commiting
    2013-10-14 15:39:42 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Task commit
    信息: Task attempt_local_0010_r_000000_0 is allowed to commit now
    2013-10-14 15:39:42 org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter commitTask
    信息: Saved output of task 'attempt_local_0010_r_000000_0' to hdfs://192.168.1.210:9000/user/hdfs/mix_data/result/clusters-9
    2013-10-14 15:39:42 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: reduce > reduce
    2013-10-14 15:39:42 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0010_r_000000_0' done.
    2013-10-14 15:39:43 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息:  map 100% reduce 100%
    2013-10-14 15:39:43 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Job complete: job_local_0010
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Counters log
    信息: Counters: 19
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Counters log
    信息:   File Output Format Counters 
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Written=695
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Counters log
    信息:   FileSystemCounters
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_READ=30544993
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_READ=741007
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_WRITTEN=32013760
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_WRITTEN=154545
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Counters log
    信息:   File Input Format Counters 
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Read=31390
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Counters log
    信息:   Map-Reduce Framework
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Counters log
    信息:     Map output materialized bytes=681
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Counters log
    信息:     Map input records=1000
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Counters log
    信息:     Reduce shuffle bytes=0
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Counters log
    信息:     Spilled Records=6
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Counters log
    信息:     Map output bytes=666
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Counters log
    信息:     Total committed heap usage (bytes)=1966735360
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Counters log
    信息:     SPLIT_RAW_BYTES=130
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Counters log
    信息:     Combine input records=0
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Counters log
    信息:     Reduce input records=3
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Counters log
    信息:     Reduce input groups=3
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Counters log
    信息:     Combine output records=0
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Counters log
    信息:     Reduce output records=3
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Counters log
    信息:     Map output records=3
    2013-10-14 15:39:43 org.apache.hadoop.mapred.JobClient copyAndConfigureFiles
    警告: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
    2013-10-14 15:39:43 org.apache.hadoop.mapreduce.lib.input.FileInputFormat listStatus
    信息: Total input paths to process : 1
    2013-10-14 15:39:43 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Running job: job_local_0011
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    2013-10-14 15:39:43 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: io.sort.mb = 100
    2013-10-14 15:39:43 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: data buffer = 79691776/99614720
    2013-10-14 15:39:43 org.apache.hadoop.mapred.MapTask$MapOutputBuffer 
    信息: record buffer = 262144/327680
    2013-10-14 15:39:43 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
    信息: Starting flush of map output
    2013-10-14 15:39:43 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
    信息: Finished spill 0
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0011_m_000000_0 is done. And is in the process of commiting
    2013-10-14 15:39:43 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0011_m_000000_0' done.
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    2013-10-14 15:39:43 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Merger$MergeQueue merge
    信息: Merging 1 sorted segments
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Merger$MergeQueue merge
    信息: Down to the last merge-pass, with 1 segments left of total size: 677 bytes
    2013-10-14 15:39:43 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0011_r_000000_0 is done. And is in the process of commiting
    2013-10-14 15:39:43 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Task commit
    信息: Task attempt_local_0011_r_000000_0 is allowed to commit now
    2013-10-14 15:39:43 org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter commitTask
    信息: Saved output of task 'attempt_local_0011_r_000000_0' to hdfs://192.168.1.210:9000/user/hdfs/mix_data/result/clusters-10
    2013-10-14 15:39:43 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: reduce > reduce
    2013-10-14 15:39:43 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0011_r_000000_0' done.
    2013-10-14 15:39:44 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息:  map 100% reduce 100%
    2013-10-14 15:39:44 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Job complete: job_local_0011
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Counters log
    信息: Counters: 19
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Counters log
    信息:   File Output Format Counters 
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Written=695
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Counters log
    信息:   FileSystemCounters
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_READ=33833211
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_READ=808345
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_WRITTEN=35458320
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_WRITTEN=156323
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Counters log
    信息:   File Input Format Counters 
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Read=31390
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Counters log
    信息:   Map-Reduce Framework
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Counters log
    信息:     Map output materialized bytes=681
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Counters log
    信息:     Map input records=1000
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Counters log
    信息:     Reduce shuffle bytes=0
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Counters log
    信息:     Spilled Records=6
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Counters log
    信息:     Map output bytes=666
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Counters log
    信息:     Total committed heap usage (bytes)=2166095872
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Counters log
    信息:     SPLIT_RAW_BYTES=130
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Counters log
    信息:     Combine input records=0
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Counters log
    信息:     Reduce input records=3
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Counters log
    信息:     Reduce input groups=3
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Counters log
    信息:     Combine output records=0
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Counters log
    信息:     Reduce output records=3
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Counters log
    信息:     Map output records=3
    2013-10-14 15:39:44 org.apache.hadoop.mapred.JobClient copyAndConfigureFiles
    警告: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
    2013-10-14 15:39:44 org.apache.hadoop.mapreduce.lib.input.FileInputFormat listStatus
    信息: Total input paths to process : 1
    2013-10-14 15:39:44 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Running job: job_local_0012
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Task initialize
    信息:  Using ResourceCalculatorPlugin : null
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Task done
    信息: Task:attempt_local_0012_m_000000_0 is done. And is in the process of commiting
    2013-10-14 15:39:44 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Task commit
    信息: Task attempt_local_0012_m_000000_0 is allowed to commit now
    2013-10-14 15:39:44 org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter commitTask
    信息: Saved output of task 'attempt_local_0012_m_000000_0' to hdfs://192.168.1.210:9000/user/hdfs/mix_data/result/clusteredPoints
    2013-10-14 15:39:44 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
    信息: 
    2013-10-14 15:39:44 org.apache.hadoop.mapred.Task sendDone
    信息: Task 'attempt_local_0012_m_000000_0' done.
    2013-10-14 15:39:45 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息:  map 100% reduce 0%
    2013-10-14 15:39:45 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
    信息: Job complete: job_local_0012
    2013-10-14 15:39:45 org.apache.hadoop.mapred.Counters log
    信息: Counters: 11
    2013-10-14 15:39:45 org.apache.hadoop.mapred.Counters log
    信息:   File Output Format Counters 
    2013-10-14 15:39:45 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Written=41520
    2013-10-14 15:39:45 org.apache.hadoop.mapred.Counters log
    信息:   File Input Format Counters 
    2013-10-14 15:39:45 org.apache.hadoop.mapred.Counters log
    信息:     Bytes Read=31390
    2013-10-14 15:39:45 org.apache.hadoop.mapred.Counters log
    信息:   FileSystemCounters
    2013-10-14 15:39:45 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_READ=18560374
    2013-10-14 15:39:45 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_READ=437203
    2013-10-14 15:39:45 org.apache.hadoop.mapred.Counters log
    信息:     FILE_BYTES_WRITTEN=19450325
    2013-10-14 15:39:45 org.apache.hadoop.mapred.Counters log
    信息:     HDFS_BYTES_WRITTEN=120417
    2013-10-14 15:39:45 org.apache.hadoop.mapred.Counters log
    信息:   Map-Reduce Framework
    2013-10-14 15:39:45 org.apache.hadoop.mapred.Counters log
    信息:     Map input records=1000
    2013-10-14 15:39:45 org.apache.hadoop.mapred.Counters log
    信息:     Spilled Records=0
    2013-10-14 15:39:45 org.apache.hadoop.mapred.Counters log
    信息:     Total committed heap usage (bytes)=1083047936
    2013-10-14 15:39:45 org.apache.hadoop.mapred.Counters log
    信息:     SPLIT_RAW_BYTES=130
    2013-10-14 15:39:45 org.apache.hadoop.mapred.Counters log
    信息:     Map output records=1000
    Dumping out clusters from clusters: hdfs://192.168.1.210:9000/user/hdfs/mix_data/result/clusters-*-final and clusteredPoints: hdfs://192.168.1.210:9000/user/hdfs/mix_data/result/clusteredPoints
    CL-552{n=443 c=[1.631, -0.412] r=[1.563, 1.407]}
    	Weight : [props - optional]:  Point:
    	1.0: [-2.393, 3.347]
    	1.0: [-4.364, 1.905]
    	1.0: [-3.275, 0.023]
    	1.0: [-2.479, 2.534]
    	1.0: [-0.559, 1.223]
    	...
    	
    CL-847{n=77 c=[-2.953, -0.971] r=[1.767, 2.189]}
    	Weight : [props - optional]:  Point:
    	1.0: [-0.883, -3.320]
    	1.0: [-1.099, -6.063]
    	1.0: [-0.004, -0.610]
    	1.0: [-2.996, -3.610]
    	1.0: [3.988, 1.008]
    	...
    
    CL-823{n=480 c=[0.219, 2.600] r=[1.479, 1.385]}
    	Weight : [props - optional]:  Point:
    	1.0: [2.670, 1.851]
    	1.0: [2.177, 6.773]
    	1.0: [5.537, 2.651]
    	1.0: [5.663, 6.868]
    	1.0: [5.117, 3.747]
    	1.0: [1.912, 2.959]
    	...
    

    4). 聚类结果解读
    我们可以把上面的日志分解析成3个部分解读

    • a. 初始化环境
    • b. 算法执行
    • c. 打印聚类结果

    a. 初始化环境
    出初HDFS的数据目录和工作目录,并上传数据文件。

    
    Delete: hdfs://192.168.1.210:9000/user/hdfs/mix_data
    Create: hdfs://192.168.1.210:9000/user/hdfs/mix_data
    copy from: datafile/randomData.csv to hdfs://192.168.1.210:9000/user/hdfs/mix_data
    ls: hdfs://192.168.1.210:9000/user/hdfs/mix_data
    ==========================================================
    name: hdfs://192.168.1.210:9000/user/hdfs/mix_data/randomData.csv, folder: false, size: 36655
    

    b. 算法执行
    算法执行,有3个步骤。

    • 1):把原始数据randomData.csv,转成Mahout sequence files of VectorWritable。
    • 2):通过随机的方法,选中kmeans的3个中心,做为初始集群
    • 3):根据迭代次数的设置,执行MapReduce,进行计算

    1):把原始数据randomData.csv,转成Mahout sequence files of VectorWritable。

    程序源代码:

    
          InputDriver.runJob(new Path(inPath), new Path(seqFile), "org.apache.mahout.math.RandomAccessSparseVector");
    

    日志输出:

    Job complete: job_local_0001

    2):通过随机的方法,选中kmeans的3个中心,做为初始集群

    程序源代码:

    
            int k = 3;
            Path seqFilePath = new Path(seqFile);
            Path clustersSeeds = new Path(seeds);
            DistanceMeasure measure = new EuclideanDistanceMeasure();
            clustersSeeds = RandomSeedGenerator.buildRandom(conf, seqFilePath, clustersSeeds, k, measure);
    

    日志输出:

    Job complete: job_local_0002

    3):根据迭代次数的设置,执行MapReduce,进行计算
    程序源代码:

    
            KMeansDriver.run(conf, seqFilePath, clustersSeeds, new Path(outPath), measure, 0.01, 10, true, 0.01, false);
    

    日志输出:

    
    Job complete: job_local_0003
    Job complete: job_local_0004
    Job complete: job_local_0005
    Job complete: job_local_0006
    Job complete: job_local_0007
    Job complete: job_local_0008
    Job complete: job_local_0009
    Job complete: job_local_0010
    Job complete: job_local_0011
    Job complete: job_local_0012
    

    c. 打印聚类结果

    
    Dumping out clusters from clusters: hdfs://192.168.1.210:9000/user/hdfs/mix_data/result/clusters-*-final and clusteredPoints: hdfs://192.168.1.210:9000/user/hdfs/mix_data/result/clusteredPoints
    CL-552{n=443 c=[1.631, -0.412] r=[1.563, 1.407]}
    CL-847{n=77 c=[-2.953, -0.971] r=[1.767, 2.189]}
    CL-823{n=480 c=[0.219, 2.600] r=[1.479, 1.385]}
    

    运行结果:有3个中心。

    • Cluster1, 包括443个点,中心坐标[1.631, -0.412]
    • Cluster2, 包括77个点,中心坐标[-2.953, -0.971]
    • Cluster3, 包括480 个点,中心坐标[0.219, 2.600]

    5). HDFS产生的目录

    
    # 根目录
    ~ hadoop fs -ls /user/hdfs/mix_data
    Found 4 items
    -rw-r--r--   3 Administrator supergroup      36655 2013-10-04 15:31 /user/hdfs/mix_data/randomData.csv
    drwxr-xr-x   - Administrator supergroup          0 2013-10-04 15:31 /user/hdfs/mix_data/result
    drwxr-xr-x   - Administrator supergroup          0 2013-10-04 15:31 /user/hdfs/mix_data/seeds
    drwxr-xr-x   - Administrator supergroup          0 2013-10-04 15:31 /user/hdfs/mix_data/seqfile
    
    # 输出目录
    ~ hadoop fs -ls /user/hdfs/mix_data/result
    Found 13 items
    -rw-r--r--   3 Administrator supergroup        194 2013-10-04 15:31 /user/hdfs/mix_data/result/_policy
    drwxr-xr-x   - Administrator supergroup          0 2013-10-04 15:31 /user/hdfs/mix_data/result/clusteredPoints
    drwxr-xr-x   - Administrator supergroup          0 2013-10-04 15:31 /user/hdfs/mix_data/result/clusters-0
    drwxr-xr-x   - Administrator supergroup          0 2013-10-04 15:31 /user/hdfs/mix_data/result/clusters-1
    drwxr-xr-x   - Administrator supergroup          0 2013-10-04 15:31 /user/hdfs/mix_data/result/clusters-10-final
    drwxr-xr-x   - Administrator supergroup          0 2013-10-04 15:31 /user/hdfs/mix_data/result/clusters-2
    drwxr-xr-x   - Administrator supergroup          0 2013-10-04 15:31 /user/hdfs/mix_data/result/clusters-3
    drwxr-xr-x   - Administrator supergroup          0 2013-10-04 15:31 /user/hdfs/mix_data/result/clusters-4
    drwxr-xr-x   - Administrator supergroup          0 2013-10-04 15:31 /user/hdfs/mix_data/result/clusters-5
    drwxr-xr-x   - Administrator supergroup          0 2013-10-04 15:31 /user/hdfs/mix_data/result/clusters-6
    drwxr-xr-x   - Administrator supergroup          0 2013-10-04 15:31 /user/hdfs/mix_data/result/clusters-7
    drwxr-xr-x   - Administrator supergroup          0 2013-10-04 15:31 /user/hdfs/mix_data/result/clusters-8
    drwxr-xr-x   - Administrator supergroup          0 2013-10-04 15:31 /user/hdfs/mix_data/result/clusters-9
    
    # 产生的随机中心种子目录
    ~ hadoop fs -ls /user/hdfs/mix_data/seeds
    Found 1 items
    -rw-r--r--   3 Administrator supergroup        599 2013-10-04 15:31 /user/hdfs/mix_data/seeds/part-randomSeed
    
    # 输入文件换成Mahout格式文件的目录
    ~ hadoop fs -ls /user/hdfs/mix_data/seqfile
    Found 2 items
    -rw-r--r--   3 Administrator supergroup          0 2013-10-04 15:31 /user/hdfs/mix_data/seqfile/_SUCCESS
    -rw-r--r--   3 Administrator supergroup      31390 2013-10-04 15:31 /user/hdfs/mix_data/seqfile/part-m-00000
    

    4. 用R语言可视化结果

    分别把聚类后的点,保存到不同的cluster*.csv文件,然后用R语言画图。

    
    c1<-read.csv(file="cluster1.csv",sep=",",header=FALSE)
    c2<-read.csv(file="cluster2.csv",sep=",",header=FALSE)
    c3<-read.csv(file="cluster3.csv",sep=",",header=FALSE)
    y<-rbind(c1,c2,c3)
    cols<-c(rep(1,nrow(c1)),rep(2,nrow(c2)),rep(3,nrow(c3)))
    plot(y, col=c("black","blue","green")[cols])
    center<-matrix(c(1.631, -0.412,-2.953, -0.971,0.219, 2.600),ncol=2,byrow=TRUE)
    points(center, col="violetred", pch = 19)
    

    kmeans

    从上图中,我们看到有 黑,蓝,绿,三种颜色的空心点,这些点就是原始数据。
    3个紫色实点,是Mahout的kmeans后生成的3个中心。

    对比文章中用R语言实现的kmeans的分类和中心,都不太一样。 用Maven构建Mahout项目

    简单总结一下,在使用kmeans时,根据距离算法,阈值,出始中心,迭代次数的不同,kmeans计算的结果是不相同的。因此,用kmeans算法,我们一般只能得到一个模糊的分类标准,这个标准对于我们认识未知领域的数据集是很有帮助的。不能做为精确衡量数据的指标。

    5. 模板项目上传github

    https://github.com/bsspirit/maven_mahout_template/tree/mahout-0.8

    大家可以下载这个项目,做为开发的起点。

    
    ~ git clone https://github.com/bsspirit/maven_mahout_template
    ~ git checkout mahout-0.8
    

    这样,我们完成了Mahout的聚类算法Kmeans的分步式实现。接下来,我们会继续做关于Mahout中分类的实验!

    转载请注明出处:
    http://blog.fens.me/hadoop-mahout-kmeans/

     

     

    用Maven构建Mahout项目

    Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等。

    从2011年开始,中国进入大数据风起云涌的时代,以Hadoop为代表的家族软件,占据了大数据处理的广阔地盘。开源界及厂商,所有数据软件,无一不向Hadoop靠拢。Hadoop也从小众的高富帅领域,变成了大数据开发的标准。在Hadoop原有技术基础之上,出现了Hadoop家族产品,通过“大数据”概念不断创新,推出科技进步。

    作为IT界的开发人员,我们也要跟上节奏,抓住机遇,跟着Hadoop一起雄起!

    关于作者:

    • 张丹(Conan), 程序员Java,R,PHP,Javascript
    • weibo:@Conan_Z
    • blog: http://blog.fens.me
    • email: bsspirit@gmail.com

    转载请注明出处:
    http://blog.fens.me/hadoop-mahout-maven-eclipse/

    mahout-maven-logo

    前言

    基于Hadoop的项目,不管是MapReduce开发,还是Mahout的开发都是在一个复杂的编程环境中开发。Java的环境问题,是困扰着每个程序员的噩梦。Java程序员,不仅要会写Java程序,还要会调linux,会配hadoop,启动hadoop,还要会自己运维。所以,新手想玩起Hadoop真不是件简单的事。

    不过,我们可以尽可能的简化环境问题,让程序员只关注于写程序。特别是像算法程序员,把精力投入在算法设计上,要比花时间解决环境问题有价值的多。

    目录

    1. Maven介绍和安装
    2. Mahout单机开发环境介绍
    3. 用Maven构建Mahout开发环境
    4. 用Mahout实现协同过滤userCF
    5. 用Mahout实现kmeans
    6. 模板项目上传github

    1. Maven介绍和安装

    请参考文章:用Maven构建Hadoop项目

    开发环境

    • Win7 64bit
    • Java 1.6.0_45
    • Maven 3
    • Eclipse Juno Service Release 2
    • Mahout 0.6

    这里要说明一下mahout的运行版本。

    • mahout-0.5, mahout-0.6, mahout-0.7,是基于hadoop-0.20.2x的。
    • mahout-0.8, mahout-0.9,是基于hadoop-1.1.x的。
    • mahout-0.7,有一次重大升级,去掉了多个算法的单机内存运行,并且了部分API不向前兼容。

    注:本文关注于“用Maven构建Mahout的开发环境”,文中的 2个例子都是基于单机的内存实现,因此选择0.6版本。Mahout在Hadoop集群中运行会在下一篇文章介绍。

    2. Mahout单机开发环境介绍

    hadoop-mahout-dev

    如上图所示,我们可以选择在win中开发,也可以在linux中开发,开发过程我们可以在本地环境进行调试,标配的工具都是Maven和Eclipse。

    3. 用Maven构建Mahout开发环境

    • 1. 用Maven创建一个标准化的Java项目
    • 2. 导入项目到eclipse
    • 3. 增加mahout依赖,修改pom.xml
    • 4. 下载依赖

    1). 用Maven创建一个标准化的Java项目

    
    ~ D:workspacejava>mvn archetype:generate -DarchetypeGroupId=org.apache.maven.archetypes 
    -DgroupId=org.conan.mymahout -DartifactId=myMahout -DpackageName=org.conan.mymahout -Dversion=1.0-SNAPSHOT -DinteractiveMode=false
    

    进入项目,执行mvn命令

    
    ~ D:workspacejava>cd myMahout
    ~ D:workspacejavamyMahout>mvn clean install
    

    2). 导入项目到eclipse

    我们创建好了一个基本的maven项目,然后导入到eclipse中。 这里我们最好已安装好了Maven的插件。

    mahout-eclipse-folder

    3). 增加mahout依赖,修改pom.xml

    这里我使用hadoop-0.6版本,同时去掉对junit的依赖,修改文件:pom.xml

    
    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <groupId>org.conan.mymahout</groupId>
    <artifactId>myMahout</artifactId>
    <packaging>jar</packaging>
    <version>1.0-SNAPSHOT</version>
    <name>myMahout</name>
    <url>http://maven.apache.org</url>
    
    <properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    <mahout.version>0.6</mahout.version>
    </properties>
    
    <dependencies>
    <dependency>
    <groupId>org.apache.mahout</groupId>
    <artifactId>mahout-core</artifactId>
    <version>${mahout.version}</version>
    </dependency>
    <dependency>
    <groupId>org.apache.mahout</groupId>
    <artifactId>mahout-integration</artifactId>
    <version>${mahout.version}</version>
    <exclusions>
    <exclusion>
    <groupId>org.mortbay.jetty</groupId>
    <artifactId>jetty</artifactId>
    </exclusion>
    <exclusion>
    <groupId>org.apache.cassandra</groupId>
    <artifactId>cassandra-all</artifactId>
    </exclusion>
    <exclusion>
    <groupId>me.prettyprint</groupId>
    <artifactId>hector-core</artifactId>
    </exclusion>
    </exclusions>
    </dependency>
    </dependencies>
    </project>
    

    4). 下载依赖

    ~ mvn clean install

    在eclipse中刷新项目:

    mahout-eclipse-package

    项目的依赖程序,被自动加载的库路径下面。

    4. 用Mahout实现协同过滤userCF

    Mahout协同过滤UserCF深度算法剖析,请参考文章:用R解析Mahout用户推荐协同过滤算法(UserCF)

    实现步骤:

    • 1. 准备数据文件: item.csv
    • 2. Java程序:UserCF.java
    • 3. 运行程序
    • 4. 推荐结果解读

    1). 新建数据文件: item.csv

    
    ~ mkdir datafile
    ~ vi datafile/item.csv
    
    1,101,5.0
    1,102,3.0
    1,103,2.5
    2,101,2.0
    2,102,2.5
    2,103,5.0
    2,104,2.0
    3,101,2.5
    3,104,4.0
    3,105,4.5
    3,107,5.0
    4,101,5.0
    4,103,3.0
    4,104,4.5
    4,106,4.0
    5,101,4.0
    5,102,3.0
    5,103,2.0
    5,104,4.0
    5,105,3.5
    5,106,4.0
    

    数据解释:每一行有三列,第一列是用户ID,第二列是物品ID,第三列是用户对物品的打分。

    2). Java程序:UserCF.java

    Mahout协同过滤的数据流,调用过程。

    mahout-recommendation-process

    上图摘自:Mahout in Action

    新建JAVA类:org.conan.mymahout.recommendation.UserCF.java

    
    package org.conan.mymahout.recommendation;
    
    import java.io.File;
    import java.io.IOException;
    import java.util.List;
    
    import org.apache.mahout.cf.taste.common.TasteException;
    import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator;
    import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;
    import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;
    import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
    import org.apache.mahout.cf.taste.impl.similarity.EuclideanDistanceSimilarity;
    import org.apache.mahout.cf.taste.model.DataModel;
    import org.apache.mahout.cf.taste.recommender.RecommendedItem;
    import org.apache.mahout.cf.taste.recommender.Recommender;
    import org.apache.mahout.cf.taste.similarity.UserSimilarity;
    
    public class UserCF {
    
        final static int NEIGHBORHOOD_NUM = 2;
        final static int RECOMMENDER_NUM = 3;
    
        public static void main(String[] args) throws IOException, TasteException {
            String file = "datafile/item.csv";
            DataModel model = new FileDataModel(new File(file));
            UserSimilarity user = new EuclideanDistanceSimilarity(model);
            NearestNUserNeighborhood neighbor = new NearestNUserNeighborhood(NEIGHBORHOOD_NUM, user, model);
            Recommender r = new GenericUserBasedRecommender(model, neighbor, user);
            LongPrimitiveIterator iter = model.getUserIDs();
    
            while (iter.hasNext()) {
                long uid = iter.nextLong();
                List list = r.recommend(uid, RECOMMENDER_NUM);
                System.out.printf("uid:%s", uid);
                for (RecommendedItem ritem : list) {
                    System.out.printf("(%s,%f)", ritem.getItemID(), ritem.getValue());
                }
                System.out.println();
            }
        }
    }
    

    3). 运行程序
    控制台输出:

    
    SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
    SLF4J: Defaulting to no-operation (NOP) logger implementation
    SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
    uid:1(104,4.274336)(106,4.000000)
    uid:2(105,4.055916)
    uid:3(103,3.360987)(102,2.773169)
    uid:4(102,3.000000)
    uid:5
    

    4). 推荐结果解读

    • 向用户ID1,推荐前二个最相关的物品, 104和106
    • 向用户ID2,推荐前二个最相关的物品, 但只有一个105
    • 向用户ID3,推荐前二个最相关的物品, 103和102
    • 向用户ID4,推荐前二个最相关的物品, 但只有一个102
    • 向用户ID5,推荐前二个最相关的物品, 没有符合的

    5. 用Mahout实现kmeans

    • 1. 准备数据文件: randomData.csv
    • 2. Java程序:Kmeans.java
    • 3. 运行Java程序
    • 4. mahout结果解读
    • 5. 用R语言实现Kmeans算法
    • 6. 比较Mahout和R的结果

    1). 准备数据文件: randomData.csv

    
    ~ vi datafile/randomData.csv
    
    -0.883033363823402,-3.31967192630249
    -2.39312626419456,3.34726861118871
    2.66976353341256,1.85144276077058
    -1.09922906899594,-6.06261735207489
    -4.36361936997216,1.90509905380532
    -0.00351835125495037,-0.610105996559153
    -2.9962958796338,-3.60959839525735
    -3.27529418132066,0.0230099799641799
    2.17665594420569,6.77290756817957
    -2.47862038335637,2.53431833167278
    5.53654901906814,2.65089785582474
    5.66257474538338,6.86783609641077
    -0.558946883114376,1.22332819416237
    5.11728525486132,3.74663871584768
    1.91240516693351,2.95874731384062
    -2.49747101306535,2.05006504756875
    3.98781883213459,1.00780938946366
    

    这里只截取了一部分,更多的数据请查看源代码。

    注:我是通过R语言生成的randomData.csv

    
    x1<-cbind(x=rnorm(400,1,3),y=rnorm(400,1,3))
    x2<-cbind(x=rnorm(300,1,0.5),y=rnorm(300,0,0.5))
    x3<-cbind(x=rnorm(300,0,0.1),y=rnorm(300,2,0.2))
    x<-rbind(x1,x2,x3)
    write.table(x,file="randomData.csv",sep=",",row.names=FALSE,col.names=FALSE)
    

    2). Java程序:Kmeans.java

    Mahout中kmeans方法的算法实现过程。

    mahout-kmeans-process

    上图摘自:Mahout in Action

    新建JAVA类:org.conan.mymahout.cluster06.Kmeans.java

    
    package org.conan.mymahout.cluster06;
    
    import java.io.IOException;
    import java.util.ArrayList;
    import java.util.List;
    
    import org.apache.mahout.clustering.kmeans.Cluster;
    import org.apache.mahout.clustering.kmeans.KMeansClusterer;
    import org.apache.mahout.common.distance.EuclideanDistanceMeasure;
    import org.apache.mahout.math.Vector;
    
    public class Kmeans {
    
        public static void main(String[] args) throws IOException {
            List sampleData = MathUtil.readFileToVector("datafile/randomData.csv");
    
            int k = 3;
            double threshold = 0.01;
    
            List randomPoints = MathUtil.chooseRandomPoints(sampleData, k);
            for (Vector vector : randomPoints) {
                System.out.println("Init Point center: " + vector);
            }
    
            List clusters = new ArrayList();
            for (int i = 0; i < k; i++) {
                clusters.add(new Cluster(randomPoints.get(i), i, new EuclideanDistanceMeasure()));
            }
    
            List<List> finalClusters = KMeansClusterer.clusterPoints(sampleData, clusters, new EuclideanDistanceMeasure(), k, threshold);
            for (Cluster cluster : finalClusters.get(finalClusters.size() - 1)) {
                System.out.println("Cluster id: " + cluster.getId() + " center: " + cluster.getCenter().asFormatString());
            }
        }
    
    }
    

    3). 运行Java程序
    控制台输出:

    
    Init Point center: {0:-0.162693685149196,1:2.19951550286862}
    Init Point center: {0:-0.0409782183083317,1:2.09376666042057}
    Init Point center: {0:0.158401778474687,1:2.37208412905273}
    SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
    SLF4J: Defaulting to no-operation (NOP) logger implementation
    SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
    Cluster id: 0 center: {0:-2.686856800552941,1:1.8939462954763795}
    Cluster id: 1 center: {0:0.6334255423230666,1:0.49472852972602105}
    Cluster id: 2 center: {0:3.334520309711998,1:3.2758355898247653}
    

    4). mahout结果解读

    • 1. Init Point center表示,kmeans算法初始时的设置的3个中心点
    • 2. Cluster center表示,聚类后找到3个中心点

    5). 用R语言实现Kmeans算法
    接下来为了让结果更直观,我们再用R语言,进行kmeans实验,操作相同的数据。

    R语言代码:

    
    > y<-read.csv(file="randomData.csv",sep=",",header=FALSE) 
    > cl<-kmeans(y,3,iter.max = 10, nstart = 25) 
    > cl$centers
              V1         V2
    1 -0.4323971  2.2852949
    2  0.9023786 -0.7011153
    3  4.3725463  2.4622609
    
    # 生成聚类中心的图形
    > plot(y, col=c("black","blue","green")[cl$cluster])
    > points(cl$centers, col="red", pch = 19)
    
    # 画出Mahout聚类的中心
    > mahout<-matrix(c(-2.686856800552941,1.8939462954763795,0.6334255423230666,0.49472852972602105,3.334520309711998,3.2758355898247653),ncol=2,byrow=TRUE) 
    > points(mahout, col="violetred", pch = 19)
    

    聚类的效果图:
    kmeans-center

    6). 比较Mahout和R的结果
    从上图中,我们看到有 黑,蓝,绿,三种颜色的空心点,这些点就是原始的数据。

    3个红色实点,是R语言kmeans后生成的3个中心。
    3个紫色实点,是Mahout的kmeans后生成的3个中心。

    R语言和Mahout生成的点,并不是重合的,原因有几点:

    • 1. 距离算法不一样:
      Mahout中,我们用的 “欧氏距离(EuclideanDistanceMeasure)”
      R语言中,默认是”Hartigan and Wong”
    • 2. 初始化的中心是不一样的。
    • 3. 最大迭代次数是不一样的。
    • 4. 点合并时,判断的”阈值(threshold)”是不一样的。

    6. 模板项目上传github

    https://github.com/bsspirit/maven_mahout_template/tree/mahout-0.6

    大家可以下载这个项目,做为开发的起点。

     
    ~ git clone https://github.com/bsspirit/maven_mahout_template
    ~ git checkout mahout-0.6
    

    我们完成了第一步,下面就将正式进入mahout算法的开发实践,并且应用到hadoop集群的环境中。

    下一篇:Mahout分步式程序开发 基于物品的协同过滤ItemCF

    转载请注明出处:
    http://blog.fens.me/hadoop-mahout-maven-eclipse/

  • 相关阅读:
    你若不努力,整个世界将与你无关
    【规范】yii2 resetful 授权验证
    DFT到FFT的理解
    【统计学】6.统计量及其抽样分布
    【统计学】5.概率与概率分布
    【统计学】4.数据的概括性度量
    【统计学】3.数据的图表展示
    【统计学】2.数据的搜集
    【统计学】1.导论
    小程序API(1.19)利用API函数设置标签栏的方法
  • 原文地址:https://www.cnblogs.com/phoenixzq/p/3536212.html
Copyright © 2011-2022 走看看