此文转载自:https://blog.csdn.net/qq_35008055/article/details/110201571#commentBox
手把手教你用Gurobi求解一个数学模型
手把手教你用Gurobi求解一个数学模型
在接触Gurobi之前,一直使用Java语言调用cplex求解数学模型,这段时间在师兄的指点下,学习了使用python调用Gurobi的一些基础操作,感叹实在是太简易了。
在此分享一个求解Vrptw问题的小例子。
带时间窗的车辆路径规划问题(Vrptw)
对于Vrptw问题来说,数学模型主要由以下部分组成。首先我们定义一些相关参数,一个图可以表示为 G ( V , A ) G(V,A) G(V,A),其中 V = { 0 , 1 , . . . , n , n + 1 } V= { 0,1,...,n,n+1 } V={0,1,...,n,n+1}为图中所有点的集合, A A A为图中所有弧的集合,有 ( i , j ) ∈ (i,j)in (i,j)∈A, ∀ i , j ∈ V , i ≠ j forall i,jin V, i e j ∀i,j∈V,i�=j。弧 ( i , j ) (i,j) (i,j)的单位运输费用为 c i j c_{ij} cij,运输时间为 t i j t_{ij} tij,每个客户点的需求为 q i j q_{ij} qij,可服务的时间窗为 [ e i , l i ] [e_i,l_i] [ei,li],服务时长为 s e r v i serv_i servi。令车辆的集合为 K K K,每辆车的最大载重为 Q k , ∀ k ∈ K Q_k,forall kin K Qk,∀k∈K。决策变量为 x i j k x_{ij}^k xijk,代表第 k k k辆车是否服务了弧 ( i , j ) (i,j) (i,j); s i s_i si为客户点 i i i开始被服务的时间。
接下来构建数学模型。
目标函数为最小化运输成本:
m
i
n
∑
k
∈
K
∑
(
i
,
j
)
∈
A
c
i
j
x
i
j
(1)
min sum_{kin K} sum_{(i,j)in A}c_{ij}x_{ij} ag{1}
mink∈K∑(i,j)∈A∑cijxij(1)
约束一让车辆驶出仓库(depot):
∑
(
0
,
j
)
∈
A
x
0
j
k
=
1
,
∀
k
∈
K
(2)
sum_{(0,j)in A}x_{0j}^k =1, forall kin K ag{2}
(0,j)∈A∑x0jk=1, ∀k∈K(2)
约束二为流平衡(除去depot之外的点):
∑
(
i
,
j
)
∈
A
x
i
j
k
−
∑
(
j
,
i
)
∈
A
x
j
i
k
=
0
,
∀
k
∈
K
,
i
∈
V
∖
{
s
,
t
}
(3)
sum_{(i,j)in A}x_{ij}^k - sum_{(j,i)in A}x_{ji}^k = 0, forall kin K ,i in Vsetminus {s,t} ag{3}
(i,j)∈A∑xijk−(j,i)∈A∑xjik=0, ∀k∈K,i∈V∖{s,t}(3)
约束三让车辆驶回depot:
∑
(
i
,
n
+
1
)
∈
A
x
i
,
n
+
1
k
=
1
,
∀
k
∈
K
(4)
sum_{(i,n+1)in A}x_{i,n+1}^k =1, forall kin K ag{4}
(i,n+1)∈A∑xi,n+1k=1, ∀k∈K(4)
约束四保证每个客户点都被服务:
∑
k
∈
K
∑
(
i
,
j
)
∈
A
x
i
,
j
k
=
1
,
∀
i
∈
V
∖
{
s
,
t
}
(5)
sum_{k in K}sum_{(i,j)in A}x_{i,j}^k =1, forall i in Vsetminus {s,t} ag{5}
k∈K∑(i,j)∈A∑xi,jk=1, ∀i∈V∖{s,t}(5)
约束五保证被服务的相邻节点开始服务时间的大小关系(去回路):
s
i
+
t
i
j
+
s
e
r
v
i
−
M
(
1
−
x
i
j
)
≤
s
j
,
∀
(
i
,
j
)
∈
A
(6)
s_i+t_{ij}+serv_i-M(1-x_{ij})le s_j, forall (i,j) in A ag{6}
si+tij+servi−M(1−xij)≤sj, ∀(i,j)∈A(6)
约束六保证不违反客户的时间窗:
e
i
≤
s
i
≤
l
i
,
∀
i
∈
V
∖
{
s
,
t
}
(7)
e_i le s_i le l_i , forall i in Vsetminus {s,t} ag{7}
ei≤si≤li, ∀i∈V∖{s,t}(7)
约束七保证不违反车辆的载重约束:
∑
(
i
,
j
)
∈
A
x
i
j
k
q
i
≤
Q
k
,
∀
k
∈
K
(8)
sum_{(i,j)in A}x_{ij}^kq_i le Q_k , forall k in K ag{8}
(i,j)∈A∑xijkqi≤Qk, ∀k∈K(8)
最后是决策变量的取值约束:
x
i
j
k
∈
{
0
,
1
}
∀
(
i
,
j
)
∈
A
,
k
∈
K
s
i
≥
0
,
∀
i
∈
V
∖
{
s
,
t
}
(9)
x_{ij}^kin {0,1} forall (i,j) in A,k in K \ s_i ge 0, forall i in Vsetminus {s,t} ag{9}
xijk∈{0,1} ∀(i,j)∈A,k∈Ksi≥0, ∀i∈V∖{s,t}(9)
那么(1)~(9)式就组成了Vrptw问题的数学模型。
python调用Gurobi求解Vrptw
首先我们定义一下需要用到的参数:
class Data:
customerNum = 0
nodeNum = 0
vehicleNum = 0
capacity = 0
cor_X = []
cor_Y = []
demand = []
serviceTime = []
readyTime = []
dueTime = []
disMatrix = [[]]
定义一个读取数据的函数,并对节点之间的距离进行计算:
# function to read data from .txt files
def readData(data, path, customerNum):
data.customerNum = customerNum
data.nodeNum = customerNum + 2
f = open(path, 'r')
lines = f.readlines()
count = 0
# read the info
for line in lines:
count = count + 1
if (count == 5):
line = line[:-1].strip()
str = re.split(r" +", line)
data.vehicleNum = int(str[0])
data.capacity = float(str[1])
elif (count >= 10 and count <= 10 + customerNum):
line = line[:-1]
str = re.split(r" +", line)
data.cor_X.append(float(str[2]))
data.cor_Y.append(float(str[3]))
data.demand.append(float(str[4]))
data.readyTime.append(float(str[5]))
data.dueTime.append(float(str[6]))
data.serviceTime.append(float(str[7]))
data.cor_X.append(data.cor_X[0])
data.cor_Y.append(data.cor_Y[0])
data.demand.append(data.demand[0])
data.readyTime.append(data.readyTime[0])
data.dueTime.append(data.dueTime[0])
data.serviceTime.append(data.serviceTime[0])
# compute the distance matrix
data.disMatrix = [([0] * data.nodeNum) for p in range(data.nodeNum)] # 初始化距离矩阵的维度,防止浅拷贝
# data.disMatrix = [[0] * nodeNum] * nodeNum]; 这个是浅拷贝,容易重复
for i in range(0, data.nodeNum):
for j in range(0, data.nodeNum):
temp = (data.cor_X[i] - data.cor_X[j]) ** 2 + (data.cor_Y[i] - data.cor_Y[j]) ** 2
data.disMatrix[i][j] = math.sqrt(temp)
temp = 0
return data
读取数据,并定义一些参数:
data = Data()
path = 'c101.txt' //读取Solomon数据集
customerNum = 20 //设置客户数量
readData(data, path, customerNum)
data.vehicleNum = 10 //设置车辆数
printData(data, customerNum)
BigM = 100000 //定义一个极大值
调用gurobi进行模型的建立与求解:
x = {}
s = {} //定义字典用来存放决策变量
根据式(9)定义决策变量,并加入模型当中:
for i in range(data.nodeNum):
for k in range(data.vehicleNum):
name = 's_' + str(i) + '_' + str(k)
s[i,k] = model.addVar(0
, 1500
, vtype= GRB.CONTINUOUS
, name= name) //定义访问时间为连续变量
for j in range(data.nodeNum):
if(i != j):
name = 'x_' + str(i) + '_' + str(j) + '_' + str(k)
x[i,j,k] = model.addVar(0
, 1
, vtype= GRB.BINARY
, name= name) //定义是否服务为0-1变量
根据式(1)定义目标函数,并加入模型当中:
//首先定义一个线性表达式
obj = LinExpr(0)
for i in range(data.nodeNum):
for k in range(data.vehicleNum):
for j in range(data.nodeNum):
if(i != j):
//将目标函数系数与决策变量相乘,并进行连加
obj.addTerms(data.disMatrix[i][j], x[i,j,k])
//将表示目标函数的线性表达式加入模型,并定义为求解最小化问题
model.setObjective(obj, GRB.MINIMIZE)
根据式(2)~(8)定义决策变量,并加入模型当中:
约束一(vehicle_depart):
for k in range(data.vehicleNum):
//同样先定义一个线性表达式
lhs = LinExpr(0)
for j in range(data.nodeNum):
if(j != 0):
//约束系数与决策变量相乘
lhs.addTerms(1, x[0,j,k])
//将约束加入模型
model.addConstr(lhs == 1, name= 'vehicle_depart_' + str(k))
约束二(flow_conservation):
for k in range(data.vehicleNum):
for h in range(1, data.nodeNum - 1):
expr1 = LinExpr(0)
expr2 = LinExpr(0)
for i in range(data.nodeNum):
if (h != i):
expr1.addTerms(1, x[i,h,k])
for j in range(data.nodeNum):
if (h != j):
expr2.addTerms(1, x[h,j,k])
model.addConstr(expr1 == expr2, name= 'flow_conservation_' + str(i))
expr1.clear()
expr2.clear()
约束三(vehicle_enter):
for k in range(data.vehicleNum):
lhs = LinExpr(0)
for j in range(data.nodeNum - 1):
if(j != 0):
lhs.addTerms(1, x[j, data.nodeNum-1, k])
model.addConstr(lhs == 1, name= 'vehicle_enter_' + str(k))
约束四(customer_visit):
for i in range(1, data.nodeNum - 1):
lhs = LinExpr(0)
for k in range(data.vehicleNum):
for j in range(1, data.nodeNum):
if(i != j):
lhs.addTerms(1, x[i,j,k])
model.addConstr(lhs == 1, name= 'customer_visit_' + str(i))
约束五(time_windows):
for k in range(data.vehicleNum):
for i in range(data.nodeNum):
for j in range(data.nodeNum):
if(i != j):
model.addConstr(s[i,k] + data.disMatrix[i][j] + data.serviceTime[i] - s[j,k]- BigM + BigM * x[i,j,k] <= 0 , name= 'time_windows_')
约束六(ready_time and due_time):
for i in range(1,data.nodeNum-1):
for k in range(data.vehicleNum):
model.addConstr(data.readyTime[i] <= s[i,k], name= 'ready_time')
model.addConstr(s[i,k] <= data.dueTime[i], name= 'due_time')
约束七(capacity_vehicle):
for k in range(data.vehicleNum):
lhs = LinExpr(0)
for i in range(1, data.nodeNum - 1):
for j in range(data.nodeNum):
if(i != j):
lhs.addTerms(data.demand[i], x[i,j,k])
model.addConstr(lhs <= data.capacity, name= 'capacity_vehicle' + str(k))
求解模型(solve)并输出解:
model.optimize()
print("
-----optimal value-----")
print(model.ObjVal)
for key in x.keys():
if(x[key].x > 0 ):
print(x[key].VarName + ' = ', x[key].x)
导出模型:
model.write('VRPTW.lp')
求解结果(部分):
这样就完成了,感谢大家的阅读。
作者:夏旸,清华大学,工业工程系/深圳国际研究生院 (硕士在读)
刘兴禄,清华大学,清华伯克利深圳学院(博士在读)
完整Project文件请关注运小筹公众号,回复【Vrptw】获取。