zoukankan      html  css  js  c++  java
  • 实验二 K-近邻算法及应用

    博客班级 班级链接
    作业要求 作业要求链接
    学号 3180701115

    一、实验目的

    1、理解K-近邻算法原理,能实现算法K近邻算法;
    2、掌握常见的距离度量方法;
    3、掌握K近邻树实现算法;
    4、针对特定应用场景及数据,能应用K近邻解决实际问题。

    二、实验内容

    1、实现曼哈顿距离、欧氏距离、闵式距离算法,并测试算法正确性。
    2、实现K近邻树算法;
    3、针对iris数据集,应用sklearn的K近邻算法进行类别预测。
    4、 熟悉iris数据集,并能使用感知器算法对该数据集构建模型并应用。

    三、实验报告要求

    1、对照实验内容,撰写实验过程、算法及测试结果;
    2、代码规范化:命名规则、注释;
    3、分析核心算法的复杂度;
    4、查阅文献,讨论K近邻的优缺点;
    5、举例说明K近邻的应用场景。

    四、实验过程

    k*邻法
    k邻法是一种基本的分类与回归方法。k邻法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多值。k邻法思想:1. 根据给定的距离度量方法,找出训练数据集中与实例x最相邻的k个点;2. 在k 个点中,根据分类决策规则,决定x 的类别。 k邻法中,当训练数据集、距离度量、k值、分类决策规则确定后,对于任何一个新的输入实例,它所属的类唯一的确定;这相当于将特征空间划分为一些子空间,确定子空间里每一个点所属的类。

    KNN算法的一般流程————

    1.收集数据:可以使用任何方法

    2.准备数据:距离计算所需要的数值,最后是结构化的数 据格式。

    3.分析数据:可以使用任何方法

    4.训练算法: (此步骤kNN)中不适用

    5.测试算法:计算错误率

    6.使用算法:首先需要输入样本数据和结构化的输出结果, 然后运行k-*邻算法判定输入数据分别属于哪个分类, 最后应用对计算出的分类执行后续的处理。

    import math
    #导入数学运算函数
    from itertools import combinations
    

    itertools模块是python的一个内置模块,它提供了非常有用的用于操作迭代对象的函数。
    Python的itertools库中提供了combinations方法可以轻松的实现排列组合。
    p = 1 曼哈顿距离
    p = 2 欧氏距离
    p = inf 闵式距离minkowski_distance

    #计算欧式距离
    def L(x, y, p=2):
    # x1 = [1, 1], x2 = [5,1]  在这里,实例是两个二维特征 x1 = [1, 1], x2 = [5,1]
        if len(x) == len(y) and len(x) > 1:
        # 当两个特征的维数相等时,并且维度大于1时。
            sum = 0
            # 目前总的损失函数值为0
            for i in range(len(x)): # 用range函数来遍历x所有的维度,x与y的维度相等。
                sum += math.pow(abs(x[i] - y[i]), p)
                # math.pow( x, y )函数是计算x的y次方。
            return math.pow(sum, 1/p)# 距离公式。
        else:
            return 0
    
    # 课本例3.1
    #数据准备
    x1 = [1, 1]
    x2 = [5, 1]
    x3 = [4, 4]
    
    # x1, x2
    #输入数据
    for i in range(1, 5):
        r = { '1-{}'.format(c):L(x1, c, p=i) for c in [x2, x3]}
        # 一条语句循环两次x2、x3,当x2时,当前i产生一个值,当x3时,当前i产生一个值。
        print(min(zip(r.values(), r.keys())))
        print(min(zip(r.values(), r.keys())))
    

    结果:

    python实现,遍历所有数据点,找出n个距离最*的点的分类情况,少数服从多数

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    from sklearn.datasets import load_iris
    ##载入Fisher的鸢尾花数据
    from sklearn.model_selection import train_test_split
    from collections import Counter
    # data
    iris = load_iris()#中文名是安德森鸢尾花卉数据集
    df = pd.DataFrame(iris.data, columns=iris.feature_names)#是一个表格 
    #加入一列为分类标签
    df['label'] = iris.target# 表头字段就是key
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    # 选择其中的4个特征进行训练
    # data = np.array(df.iloc[:100, [0, 1, -1]])
    
    
    df
    #输出表格
    

    结果:

    #数据进行可视化
    #将标签为0、1的两种花,根据特征为长度和宽度打点表示
    plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
    plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
    plt.xlabel('sepal length')
    plt.ylabel('sepal width')
    plt.legend()
    

    结果:

    #取数据,并且分成训练和测试集合
    data = np.array(df.iloc[:100, [0, 1, -1]])
    #按行索引,取出第0列第1列和最后一列,即取出sepal长度、宽度和标签
    X, y = data[:,:-1], data[:,-1]
    #X为sepal length,sepal width y为标签 
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
    # train_test_split函数用于将矩阵随机划分为训练子集和测试子集
    #定义模型
    class KNN:
        def __init__(self, X_train, y_train, n_neighbors=3, p=2):
            """
            parameter: n_neighbors 临*点个数
            parameter: p 距离度量
            """
            self.n = n_neighbors#临*点个数
            self.p = p#距离度量
            self.X_train = X_train
            self.y_train = y_train
        
        def predict(self, X):
            # 取出n个点,放入空的列表,列表中存放预测点与训练集点的距离及其对应标签
            # 取距离最小的k个点:先取前k个,然后遍历替换
            # knn_list存“距离”和“label”
            knn_list = []
            for i in range(self.n):
                #np.linalg.norm 求范数
                dist = np.linalg.norm(X - self.X_train[i], ord=self.p)
                knn_list.append((dist, self.y_train[i]))
            #再取出训练集剩下的点,然后与n_neighbor个点比较大叫,将距离大的点更新
            #保证knn_list列表中的点是距离最小的点
            for i in range(self.n, len(self.X_train)):
                max_index = knn_list.index(max(knn_list, key=lambda x: x[0]))
                dist = np.linalg.norm(X - self.X_train[i], ord=self.p)
                #g更新最*邻中距离比当前点远的点
                if knn_list[max_index][0] > dist:
                    knn_list[max_index] = (dist, self.y_train[i])
            # 统计
            # 统计分类最多的点,确定预测数据的分类
            knn = [k[-1] for k in knn_list]
            #counter为计数器,按照标签计数
            count_pairs = Counter(knn) 
            #排序
            max_count = sorted(count_pairs, key=lambda x:x)[-1]
            return max_count
    
        #预测的正确率
        def score(self, X_test, y_test):
            right_count = 0
            n = 10
            for X, y in zip(X_test, y_test):
                label = self.predict(X)
                if label == y:
                    right_count += 1
            return right_count / len(X_test)
    

    max(num,key=lambda x: x[0])用法:
    x:x[]字母可以随意修改,求最大值方式按照中括号[]里面的维度,
    [0]按照第一维,
    [1]按照第二维

    clf = KNN(X_train, y_train)
    clf.score(X_test, y_test)
    

    #预测点
    test_point = [6.0, 3.0]
    #预测结果
    print('Test Point: {}'.format(clf.predict(test_point)))
    

    Test Point: 1.0

    plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
    plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
    #打印预测点
    plt.plot(test_point[0], test_point[1], 'bo', label='test_point')
    plt.xlabel('sepal length')
    plt.ylabel('sepal width')
    plt.legend()
    

    结果:

    from sklearn.neighbors import KNeighborsClassifier
    clf_sk = KNeighborsClassifier()
    clf_sk.fit(X_train, y_train)
    

    结果:

    clf_sk.score(X_test, y_test)
    

    kd树

    # 建造kd树
    # kd-tree 每个结点中主要包含的数据如下:
    class KdNode(object):
        def __init__(self, dom_elt, split, left, right):
            self.dom_elt = dom_elt#结点的父结点
            self.split = split#划分结点
            self.left = left#做结点
            self.right = right#右结点
    
    class KdTree(object):
        def __init__(self, data):
            k = len(data[0])#数据维度
            #print("创建结点")
            #print("开始执行创建结点函数!!!")
            def CreateNode(split, data_set):
                #print(split,data_set)
                if not data_set:#数据集为空
                    return None
                #print("进入函数!!!")
                data_set.sort(key=lambda x:x[split])#开始找切分平面的维度
                #print("data_set:",data_set)
                split_pos = len(data_set)//2 #取得中位数点的坐标位置(求整)
                median = data_set[split_pos]
                split_next = (split+1) % k #(取余数)取得下一个节点的分离维数
                return KdNode(
                    median,
                    split,
                    CreateNode(split_next, data_set[:split_pos]),#创建左结点
                    CreateNode(split_next, data_set[split_pos+1:]))#创建右结点
            #print("结束创建结点函数!!!")
            self.root = CreateNode(0, data)#创建根结点
                
    #KDTree的前序遍历
    def preorder(root):
        print(root.dom_elt)
        if root.left:
            preorder(root.left)
        if root.right:
            preorder(root.right)
    # 遍历kd树
    #KDTree的前序遍历
    def preorder(root):
        print(root.dom_elt)
        if root.left:
            preorder(root.left)
        if root.right:
            preorder(root.right)
                   
    from math import sqrt
    from collections import namedtuple
    # 定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数
    result = namedtuple("Result_tuple",
                        "nearest_point  nearest_dist  nodes_visited")
    
    #搜索开始
    def find_nearest(tree, point):
        k = len(point)#数据维度
        
        def travel(kd_node, target, max_dist):
            if kd_node is None:
                return result([0]*k, float("inf"), 0)#表示数据的无
            
            nodes_visited = 1
            s = kd_node.split #数据维度分隔
            pivot = kd_node.dom_elt #切分根节点
            
            if target[s] <= pivot[s]:
                nearer_node = kd_node.left #下一个左结点为树根结点
                further_node = kd_node.right #记录右节点
            else: #右面更近
                nearer_node = kd_node.right
                further_node = kd_node.left
            temp1 = travel(nearer_node, target, max_dist)
            
            nearest = temp1.nearest_point# 得到叶子结点,此时为nearest
            dist = temp1.nearest_dist #update distance
            
            nodes_visited += temp1.nodes_visited
            print("nodes_visited:", nodes_visited)
            if dist < max_dist:
                max_dist = dist
            
            temp_dist = abs(pivot[s]-target[s])#计算球体与分隔超平面的距离
            if max_dist < temp_dist:
                return result(nearest, dist, nodes_visited)
            # -------
            #计算分隔点的欧式距离
            
            temp_dist = sqrt(sum((p1-p2)**2 for p1, p2 in zip(pivot, target)))#计算目标点到邻近节点的Distance
            
            if temp_dist < dist:
                
                nearest = pivot #更新最近点
                dist = temp_dist #更新最近距离
                max_dist = dist #更新超球体的半径
                print("输出数据:" , nearest, dist, max_dist)
                
            # 检查另一个子结点对应的区域是否有更近的点
            temp2 = travel(further_node, target, max_dist)
    
            nodes_visited += temp2.nodes_visited
            if temp2.nearest_dist < dist:  # 如果另一个子结点内存在更近距离
                nearest = temp2.nearest_point  # 更新最近点
                dist = temp2.nearest_dist  # 更新最近距离
    
            return result(nearest, dist, nodes_visited)
    
        return travel(tree.root, point, float("inf"))  # 从根节点开始递归
    # 数据测试
    data= [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]]
    kd=KdTree(data)
    preorder(kd.root)
    

    结果:

    # 导包
    from time import clock
    from random import random
    
    # 产生一个k维随机向量,每维分量值在0~1之间
    def random_point(k): 
        return [random() for _ in range(k)]
    
    # 产生n个k维随机向量
    def random_points(k, n):
        return [random_point(k) for _ in range(n)]
    # 输入数据进行测试
    ret = find_nearest(kd, [3,4.5])
    print (ret)
    

    结果:

    N = 400000
    t0 = clock()
    kd2 = KdTree(random_points(3, N)) # 构建包含四十万个3维空间样本点的kd树
    ret2 = find_nearest(kd2, [0.1,0.5,0.8]) # 四十万个样本点中寻找离目标最近的点
    t1 = clock()
    print ("time: ",t1-t0, "s")
    print (ret2)
    

    结果:

  • 相关阅读:
    没有生产管理,只会生产的企业即将被淘汰
    实施一套MES系统需要多少钱?
    MES助力日立电梯提升精细化管理水平
    数据定义
    (CVE-2017-16995)Ubuntu内核提权
    (CVE-2017-7494)Linux Samba远程代码执行
    (CVE-2019-13272)Linux本地提权
    vulnhub 之 dc6
    vulnhub 之 dc 5
    vulnhub 之 dc4
  • 原文地址:https://www.cnblogs.com/pianyu666/p/14797550.html
Copyright © 2011-2022 走看看