程序来自莫烦Python,略有删减和改动。
import os import torch import torch.nn as nn import torch.utils.data as Data import torchvision import matplotlib.pyplot as plt torch.manual_seed(1) # reproducible # Hyper Parameters EPOCH = 1 BATCH_SIZE = 50 LR = 0.001 # learning rate DOWNLOAD_MNIST = False # Mnist digits dataset if not(os.path.exists('./mnist/')) or not os.listdir('./mnist/'): # not mnist dir or mnist is empyt dir. (./表示当前目录) DOWNLOAD_MNIST = True train_data = torchvision.datasets.MNIST( root='./mnist/', train=True, # this is training data transform=torchvision.transforms.ToTensor(), # Converts a PIL.Image or numpy.ndarray to torch.FloatTensor of # shape (C x H x W) and normalize in the range [0.0, 1.0] download=DOWNLOAD_MNIST, ) print('train dataset shape: ', train_data.data.size()) # (60000, 28, 28) print('train dataset lable shape:', train_data.targets.size()) # (60000) # plot one example # plt.imshow(train_data.data[0].numpy(), cmap='gray') # plt.title('%i' % train_data.targets[0]) # plt.show() # Data Loader for easy mini-batch return in training, the image batch shape will be (BATCH_SIZE, 1, 28, 28) train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True) # pick 2000 samples to speed up testing test_data = torchvision.datasets.MNIST(root='./mnist/', train=False) test_x = torch.unsqueeze(test_data.data, dim=1).type(torch.FloatTensor)[:2000]/255. # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1) test_y = test_data.targets[:2000] class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Sequential( # input shape (1, 28, 28) nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=2), # output shape (16, 28, 28) nn.ReLU(), nn.MaxPool2d(kernel_size=2), # output shape (16, 14, 14) ) self.conv2 = nn.Sequential( # input shape (16, 14, 14) nn.Conv2d(16, 32, 5, 1, 2), # output shape (32, 14, 14) nn.ReLU(), nn.MaxPool2d(2), # output shape (32, 7, 7) ) self.out = nn.Linear(32 * 7 * 7, 10) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = x.view(x.size(0), -1) # flatten the output of conv2 to (batch_size, 32 * 7 * 7) output = self.out(x) # output shape (batch_size, 10) return output cnn = CNN() print('CNN architecture: ', cnn) optimizer = torch.optim.Adam(cnn.parameters(), lr=LR) # optimize all cnn parameters loss_func = nn.CrossEntropyLoss() # training and testing for epoch in range(EPOCH): for iteration, (b_x, b_y) in enumerate(train_loader): output = cnn(b_x) # cnn output, the size of b_x is ([batchsize, channel, height, width) loss = loss_func(output, b_y) # cross entropy loss optimizer.zero_grad() # clear gradients for this training step loss.backward() # back propagation, compute gradients optimizer.step() # apply gradients if iteration % 100 == 0: test_output = cnn(test_x) pred_y = torch.max(test_output, 1)[1].data.numpy() accuracy = float((pred_y == test_y.data.numpy()).sum()) / float(test_y.size(0)) print('Epoch:{:<2d} | Iteration:{:<4d} | Train loss: {:6.3f} | Test accuracy: {:4.2f}'.format(epoch, iteration, loss.data.numpy(), accuracy)) # print 10 predictions from test data test_output = cnn(test_x[:10]) pred_y = torch.max(test_output, 1)[1].data.numpy() print(pred_y, 'prediction number') print(test_y[:10].numpy(), 'real number')
运行结果: