zoukankan      html  css  js  c++  java
  • PyTorch实现用CNN识别手写数字

    程序来自莫烦Python,略有删减和改动。

    import os
    import torch
    import torch.nn as nn
    import torch.utils.data as Data
    import torchvision
    import matplotlib.pyplot as plt
    
    torch.manual_seed(1)    # reproducible
    
    # Hyper Parameters
    EPOCH = 1
    BATCH_SIZE = 50
    LR = 0.001              # learning rate
    DOWNLOAD_MNIST = False
    
    # Mnist digits dataset
    if not(os.path.exists('./mnist/')) or not os.listdir('./mnist/'):    # not mnist dir or mnist is empyt dir. (./表示当前目录)
        DOWNLOAD_MNIST = True
    
    train_data = torchvision.datasets.MNIST(
        root='./mnist/',
        train=True,                                     # this is training data
        transform=torchvision.transforms.ToTensor(),    # Converts a PIL.Image or numpy.ndarray to torch.FloatTensor of
                                                        # shape (C x H x W) and normalize in the range [0.0, 1.0]
        download=DOWNLOAD_MNIST,
    )
    
    print('train dataset shape: ', train_data.data.size())                 # (60000, 28, 28)
    print('train dataset lable shape:', train_data.targets.size())         # (60000)
    # plot one example
    # plt.imshow(train_data.data[0].numpy(), cmap='gray')
    # plt.title('%i' % train_data.targets[0])
    # plt.show()
    
    # Data Loader for easy mini-batch return in training, the image batch shape will be (BATCH_SIZE, 1, 28, 28)
    train_loader = Data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
    
    # pick 2000 samples to speed up testing
    test_data = torchvision.datasets.MNIST(root='./mnist/', train=False)
    test_x = torch.unsqueeze(test_data.data, dim=1).type(torch.FloatTensor)[:2000]/255.   # shape from (2000, 28, 28) to (2000, 1, 28, 28), value in range(0,1)
    test_y = test_data.targets[:2000]
    
    
    class CNN(nn.Module):
        def __init__(self):
            super(CNN, self).__init__()
            self.conv1 = nn.Sequential(         # input shape (1, 28, 28)
                nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=2), # output shape (16, 28, 28)   
                nn.ReLU(),
                nn.MaxPool2d(kernel_size=2),    # output shape (16, 14, 14)
            )
            self.conv2 = nn.Sequential(         # input shape (16, 14, 14)
                nn.Conv2d(16, 32, 5, 1, 2),     # output shape (32, 14, 14)
                nn.ReLU(),
                nn.MaxPool2d(2),                # output shape (32, 7, 7)
            )
            self.out = nn.Linear(32 * 7 * 7, 10)
    
        def forward(self, x):
            x = self.conv1(x)
            x = self.conv2(x)
            x = x.view(x.size(0), -1)           # flatten the output of conv2 to (batch_size, 32 * 7 * 7)
            output = self.out(x)                # output shape (batch_size, 10)
            return output
    
    
    cnn = CNN()
    print('CNN architecture:
     ', cnn)
    
    optimizer = torch.optim.Adam(cnn.parameters(), lr=LR)   # optimize all cnn parameters
    loss_func = nn.CrossEntropyLoss()
    
    # training and testing
    for epoch in range(EPOCH):
        for iteration, (b_x, b_y) in enumerate(train_loader):
            output = cnn(b_x)               # cnn output, the size of b_x is ([batchsize, channel, height, width)
            loss = loss_func(output, b_y)   # cross entropy loss
            optimizer.zero_grad()           # clear gradients for this training step
            loss.backward()                 # back propagation, compute gradients
            optimizer.step()                # apply gradients
    
            if iteration % 100 == 0:
                test_output = cnn(test_x)
                pred_y = torch.max(test_output, 1)[1].data.numpy()
                accuracy = float((pred_y == test_y.data.numpy()).sum()) / float(test_y.size(0))
                print('Epoch:{:<2d} | Iteration:{:<4d} | Train loss: {:6.3f} | Test accuracy: {:4.2f}'.format(epoch, iteration, loss.data.numpy(), accuracy))
    
    # print 10 predictions from test data
    test_output = cnn(test_x[:10])
    pred_y = torch.max(test_output, 1)[1].data.numpy()
    print(pred_y, 'prediction number')
    print(test_y[:10].numpy(), 'real number')

    运行结果:

  • 相关阅读:
    ResGen.exe 生成resources文件方法 [转]
    C#【Winform】带参启动外部EXE
    SBO的5个开发原则机遇只给有准备的人[转]
    在SQL中插入临时表时使用自动增长的数据字段
    c# 强制退出
    C#实现SQL全库检索数据比较使用DataReader与DataAdapter+Datatable效率,差距惊人!
    推荐一个C#代码混淆器 .NET Reactor
    面向对象软件设计——设计模式学习
    AbstarctFactory模式——设计模式学习
    插入排序算法(直接,折半,希尔)
  • 原文地址:https://www.cnblogs.com/picassooo/p/12813751.html
Copyright © 2011-2022 走看看