zoukankan      html  css  js  c++  java
  • UVa 10943

    Description

    Larry is very bad at math - he usually uses a calculator, which worked well throughout college. Unforunately, he is now struck in a deserted island with his good buddy Ryan after a snowboarding accident. They're now trying to spend some time figuring out some good problems, and Ryan will eat Larry if he cannot answer, so his fate is up to you!
    It's a very simple problem - given a number N, how many ways can K numbers less than N add up to N?
    For example, for N = 20 and K = 2, there are 21 ways:
    0+20
    1+19
    2+18
    3+17
    4+16
    5+15
    ...
    18+2
    19+1
    20+0

    Input

    Each line will contain a pair of numbers N and K. N and K will both be an integer from 1 to 100, inclusive. The input will terminate on 2 0's.

    Output

    Since Larry is only interested in the last few digits of the answer, for each pair of numbers N and K, print a single number mod 1,000,000 on a single line.

    Sample Input

    20 2
    20 2
    0 0

    Sample Output

    21
    21

    Resume

    将N分解成K个非负整数之和的方案数。

    Analysis

    • 思路一:
      高中组合数问题,通过隔板法可得答案为 ({C_{n+k-1}}^n) 种。
    • 思路二:
      动态规划,转移方程为$$d[i][j] = d[i-1][j] + d[i][j-1] $$其中 (d[i][j]) 表示将(i)拆分成(j)个数的方案总数。

    Code(Measure One)

    //////////////////////////////////////////////////////////////////////
    //Target: UVa 10943 - How do you add?
    //@Author: Pisceskkk
    //Date: 2019-2-16
    //////////////////////////////////////////////////////////////////////
    
    #include<cstdio>
    #define N 220
    #define mod 1000000
    #define ll long long
    using namespace std;
    
    int n,k,f[N][N];
    int dfs(int a,int b){
        if(a < b)return 0;
        if(b == 0)return 1;
        if(a == 0)return 1;
        if(f[a][b])return f[a][b];
        return f[a][b] = (dfs(a-1,b-1)+dfs(a-1,b))%mod;
    }
    int main(){
        while(1){
            scanf("%d %d",&n,&k);
            if(!n && !k){
                break;
            }
            printf("%d
    ",dfs(n+k-1,n));
        }
        return 0;
    }
    
    我思故我在
  • 相关阅读:
    平稳随机过程通过线性系统
    频谱分析的作用
    数字图像处理中的4邻接,8邻接与m邻接
    网络存储实验基础
    灰度变换
    MATLAB数字图像处理基础
    用MATLAB对信号做频谱分析
    关于 oracle10g、oracle client和plsql devement 三者之间的关系
    技术栈呢
    Linux编程
  • 原文地址:https://www.cnblogs.com/pisceskkk/p/10421427.html
Copyright © 2011-2022 走看看