zoukankan      html  css  js  c++  java
  • 牛客网(2018校赛)I

    Description

    Give you a graph G of n points, numbered 1-n. We define the Geosetic set of two points as Geodetic(x,y), representing the set of points on all the shortest path from point x to point y.
    Each point has a weight wi, we define the sum of the points in Geodetic (x, y) corresponding to wi as U(x,y)

    We guarantee that there is no self-loop and there is at most one edge between two points.
    For example

    Geodetic(2,5)={2,3,4,5}
    Geodetic(1,5)={1,3,5}

    U(2,5)=6+2+7+4=19
    U(1,5)=1+2+4=7

    Input

    The first line contains two integers n and
    m (3<=n<=200,1<=m<=n*(n-1)/2)—the number of points and the number
    of edges. The second line contains n integers, (w_1, w_2, w_3,…,w_n(1<=w_i<=1E6)).
    The next m lines, two integers x and y per line, indicate that there is an
    undirected edge between x and y with a length of 1. The next line is a integer
    q((1<=q<=1E5))-the number of questions, the next q lines, two integers x
    and y per line, indicate a question.

    Output

    q lines, one integer per line.

    Sample Input

    5 6
    1 6 2 7 4
    1 2
    1 3
    2 3
    2 4
    3 5
    4 5
    3
    2 5
    5 1
    2 4

    Sample Output

    19
    7
    13

    Resume

    求两点间所有最短路径所包含的点的集合。

    Analysis

    1. 暴力思路
      Dijkstra 加 手写集合去重。每次松弛成功就替换被松弛的点的目标集合,若恰好相等则取并集。
      注意:STL的set太慢了(tcl).
    2. Floyd 算法
      首先求出两点间最短路(算法任意)。
      那么只要符合 (dis[i][j] = dis[i][k] + dis[k][j]) 那么点(k)就在点(i) 和点(j)的最短路上。

    Code

    //////////////////////////////////////////////////////////////////////
    //Target: 2018校赛 I - Geodetic
    //@Author: Pisceskkk
    //Date: 2019-5-7
    //////////////////////////////////////////////////////////////////////
    #include<bits/stdc++.h>
    #define N 210
    #define Min(a,b) (a<b?a:b)
    using namespace std;
    
    int n,m,w[N],q,ans[N][N],gra[N][N],x,y;
    
    int main(){
        memset(gra,0x3f,sizeof(gra));
        memset(ans,0,sizeof(ans));
        scanf("%d %d",&n,&m);
        for(int i=1;i<=n;i++){
            scanf("%d",&w[i]);
            gra[i][i] = 0;
        }
        for(int i=1;i<=m;i++){
            scanf("%d %d",&x,&y);
            gra[x][y] = gra[y][x] = 1;
        }
        for(int k=1;k<=n;k++){
            for(int i=1;i<=n;i++){
                for(int j=1;j<=n;j++){
                    gra[i][j] = Min(gra[i][j],gra[i][k]+gra[k][j]);
                }
            }
        }
        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                for(int k=1;k<=n;k++){
                    if(gra[i][k] + gra[k][j] == gra[i][j]){
                        ans[i][j] += w[k];
                    }
                }
            }
        }
        scanf("%d",&q);
        while(q--){
            scanf("%d %d",&x,&y);
            printf("%d
    ",ans[x][y]);
        }
        return 0;
    }
    

    Appendix

    补题网址

    我思故我在
  • 相关阅读:
    页面 笔记
    快速统计一个数二进制中1的个数
    [JAVA] String 拼接效率
    [JAVA] String常用方法
    [letcode] 832 Flipping an Image
    [java]冒泡排序
    SharedPreferences
    归并排序
    安全退出调用多个Activity的Application
    Activity生命周期
  • 原文地址:https://www.cnblogs.com/pisceskkk/p/10829118.html
Copyright © 2011-2022 走看看