zoukankan      html  css  js  c++  java
  • 2020牛客暑期多校训练营(第一场)

    F.Infinite String Comparision
    题目链接:https://ac.nowcoder.com/acm/contest/5666/F

    分析:如果求两个字符串的长度的lcm的话,会爆内存。因此,尝试比较长度的两倍即可,根据周期性定理,如果长度等于(a + b - gcd(a, b)),如果两个字符串没有失配,那么这两个字符串是相等的。(a + b - gcd(a, b) <= min(2 * lena, 2 * lenb))

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <string>
    #include <algorithm>
    
    using namespace std;
    const int N = 100005;
    
    int main()
    {
    	string a, b;
    	while (cin >> a >> b)
    	{
    		int lena = a.size(), lenb = b.size();
    
    		if (lena > lenb)
    		{
    			int i = 0;
    			for (i = 0; i < lena * 2; ++i)
    			{
    				char na = a[i % lena];
    				char nb = b[i % lenb];
    				if (na < nb)
    				{
    					cout << "<" << endl;
    					break;
    				}
    				else if(na > nb)
    				{
    					cout << ">" << endl;
    					break;
    				}
    			}
    			if (i == 2 * lena) cout << "=" << endl;
    		}
    		else
    		{
    			int i = 0;
    			for (i = 0; i < lenb * 2; ++i)
    			{
    				char na = a[i % lena];
    				char nb = b[i % lenb];
    				if (na < nb)
    				{
    					cout << "<" << endl;
    					break;
    				}
    				else if (na > nb)
    				{
    					cout << ">" << endl;
    					break;
    				}
    			}
    			if (i == 2 * lenb) cout << "=" << endl;
    		}
    	}
    	
    	return 0;
    }
    

    H.Minimum-cost Flow(费用流)
    题目链接:https://ac.nowcoder.com/acm/contest/5666/H

    分析:首先看到分数(frac{ui}{vi}),可以想到用(gcd)化简。可以看到数据范围非常大,如果每次询问都建立一次图跑费用流,那么就会超时。不妨假设(总流量为1),每条边的容量(frac{ui}{vi}),同时乘以(v),那么总流量则为(v),每条边的容量则为(u)。那么当我们跑完费用流后,算出(总费用除以/v),并且使用(gcd)化简,即可得到答案。(每次spfa都会得到一条增广路的费用,同时这条增广路的流量在每条边上都是等流量的),我们算出每条增广路的费用后,用一个前缀和维护费用的前缀和。
    (path[a]:下标从0开始,表示第a + 1条增广路的费用)
    (sum[a]:下标从1开始,表示前a条增广路的费用)
    这些预处理出来的费用是容量为1的时候的费用。我们假设(v = a * u + b(b < u)),表示前a条的增广路的流量为a,第a + 1条增广路的流量为b,那么总的流量则为v,那么答案则为(ans = (sum[a] * u + path[a] * b) / v)

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <queue>
    #include <algorithm>
    
    using namespace std;
    using LL = long long;
    const int N = 100, M = 55 * 55 * 2;
    const LL inf = (1LL << 60);
    int h[N], e[M], ne[M], w[M], idx;
    //费用
    LL cost[M];
    //到某个点的费用
    LL d[N], incf[N];
    int pre[N];
    bool st[N];
    
    int n, m;
    int s, t;
    //最大流和最大费用
    LL res, maxflow;
    
    //每条增广路的费用和前缀和
    vector<LL> path;
    LL sum[N];
    
    LL gcd(LL a, LL b)
    {
    	return b ? gcd(b, a % b) : a;
    }
    
    //z:容量 c:单位费用
    void add(int a, int b, int z, int c)
    {
    	e[idx] = b, w[idx] = z, cost[idx] = c, ne[idx] = h[a], h[a] = idx++;
    	e[idx] = a, w[idx] = 0, cost[idx] = -c, ne[idx] = h[b], h[b] = idx++;
    }
    
    bool spfa()
    {
    	queue<int> q;
    	//求最小费用
    	for (int i = s; i <= t; ++i)
    		d[i] = inf;
    	memset(st, 0, sizeof st);
    
    	q.push(s);
    	d[s] = 0, st[s] = true;
    	//增广路上各边的最小剩余容量
    	incf[s] = inf;
    
    	while (q.size())
    	{
    		int u = q.front();
    		q.pop();
    		st[u] = false;
    		for (int i = h[u]; i != -1; i = ne[i])
    		{
    			int j = e[i];
    			if (!w[i]) continue;
    			if (d[j] > d[u] + cost[i])
    			{
    				d[j] = d[u] + cost[i];
    				incf[j] = min(incf[u], (LL)w[i]);
    				pre[j] = i;
    				if (!st[j])
    				{
    					st[j] = true;
    					q.push(j);
    				}
    			}
    		}
    	}
    	if (d[t] == inf) return false;
    	return true;
    }
    
    void update()
    {
    	int u = t;
    	while (u != s)
    	{
    		int i = pre[u];
    		w[i] -= incf[t];
    		w[i ^ 1] += incf[t];
    		u = e[i ^ 1];
    	}
    	//一条增广路的总的单位费用
    	path.push_back(d[t]);
    	maxflow += incf[t];
    	res += d[t] * incf[t];
    }
    
    int main()
    {
    	while (scanf("%d%d", &n, &m) != EOF)
    	{
    		memset(h, -1, sizeof h), idx = 0;
    		path.clear();
    
    		s = 1, t = n;
    		int a, b, c;
    		for (int i = 1; i <= m; ++i)
    		{
    			scanf("%d%d%d", &a, &b, &c);
    			add(a, b, 1, c);
    		}
    
    		while (spfa()) update();
    
    		int sz = path.size();
    		//增广路费用的前缀和
    		for (int i = 1; i <= sz; ++i)
    		{
    			sum[i] = sum[i - 1] + path[i - 1];
    		}
    
    		int q;
    		scanf("%d", &q);
    
    		while (q--)
    		{
    			LL u, v;
    			scanf("%lld%lld", &u, &v);
    
    			if (u * sz < v)
    				puts("NaN");
    			else
    			{
    				LL a = v / u;
    				LL b = v % u;
    
    				LL ans;
    				if (b == 0)
    					ans = sum[a] * u;
    				else
    					ans = sum[a] * u + path[a] * b;
    
    				LL down = gcd(ans, v);
    				ans /= down;
    				v /= down;
    
    				printf("%lld/%lld
    ", ans, v);
    			}
    		}
    	}
    
    	return 0;
    }
    

    J.Easy Integration(找规律)
    题目链接:https://ac.nowcoder.com/acm/contest/5666/J

    n = 1时, res = 1 / (2 * 3)
    n = 2时, res = (1 * 2) / (3 * 4 * 5)
    n = 3时, res = (1 * 2 * 3) / (4 * 5 * 6 * 7)

    (res = frac{n!}{frac{(2 * n + 1)!}{n!}})

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <string>
    #include <algorithm>
    
    using namespace std;
    using LL = long long;
    const int mod = 998244353;
    const int N = 2000005;
    int fact[N], infact[N];
    int qmi(int a, int k, int p)
    {
    	int res = 1;
    	while (k)
    	{
    		if (k & 1) res = (LL)res * a % p;
    		a = (LL)a * a % p;
    		k >>= 1;
    	}
    	return res;
    }
    
    int main()
    {
    	fact[0] = infact[0] = 1;
    	for (int i = 1; i < N; ++i)
    	{
    		fact[i] = (LL)fact[i - 1] * i % mod;
    		infact[i] = (LL)infact[i - 1] * qmi(i, mod - 2, mod) % mod;
    	}
    
    	int n;
    	while (cin >> n)
    	{
    		//int up = n;
    		int down = 2 * (n + 1);
    
    		int res = 1;
    		res = (LL)res * fact[n] % mod;
    		res = (LL)res * res % mod;
    		res = (LL)res * 2 * (n + 1) % mod;
    
    		cout << (LL)res * infact[down] % mod << endl;
    	}
    	
    	return 0;
    }
    
    
  • 相关阅读:
    Java使用google开源工具Thumbnailator实现图片压缩
    nginx基本配置
    CopyPropertis
    微服务(Microservices )简介
    jQuery ajax()使用serialize()提交form数据
    $.getJSON( )的使用方法简介
    理解 CSS 的 z-index 属性
    JS中的call()和apply()方法
    CSS文字换行详细解说
    如何实现JS函数的重载
  • 原文地址:https://www.cnblogs.com/pixel-Teee/p/13303185.html
Copyright © 2011-2022 走看看