zoukankan      html  css  js  c++  java
  • SPOJ-COT Count on a tree(树上的可持久化线段树)

    题意:你被给予了N个节点的树。树的节点编号从1到N。每个节点都有权值。会有如下的操作:
    u v k:询问从路径u到路径v的第k小的权值

    分析:对于可持久化线段树来说,每一棵线段树都维护着序列的前缀。那么转换到树上,就是维护从根节点到当前节点的前缀,因此,对于路径u,v来说,路径u,v上的第k小的权值是root[u] + root[v] -root[lca(u, v)] - root[pa[lca(u, v)]]。root[u] + root[v]让lca(u, v)多加了两次,要减去一次-root[lca(u, v)]。
    如下图所示:

    root[u]表示从根到u的前缀,root[v]表示从根到v的前缀,root[lca(u, v)]表示从根到lca(u, v)的前缀。

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    #include <algorithm>
    
    using namespace std;
    
    const int N = 100005;
    
    int n, m;
    
    int w[N];
    vector<int> nums;
    
    struct ST
    {
    	int lc, rc;
    	int cnt;
    }tr[4 * N + 20 * N];
    
    int fa[N][20];
    int dep[N];
    
    int root[N], tot;
    int h[N], e[N * 2], ne[N * 2], idx;
    
    void add(int a, int b)
    {
    	e[idx] = b, ne[idx] = h[a], h[a] = idx++;
    }
    
    void pushup(int u)
    {
    	tr[u].cnt = tr[tr[u].lc].cnt + tr[tr[u].rc].cnt;
    }
    
    int insert(int p, int l, int r, int x)
    {
    	int q = ++tot;
    	tr[q] = tr[p];
    	if (l == r)
    	{
    		++tr[q].cnt;
    		return q;
    	}
    	int mid = l + r >> 1;
    	if (x <= mid) tr[q].lc = insert(tr[p].lc, l, mid, x);
    	else tr[q].rc = insert(tr[p].rc, mid + 1, r, x);
    	tr[q].cnt = tr[tr[q].lc].cnt + tr[tr[q].rc].cnt;
    	return q;
    }
    
    //pp:最近公共祖先的父节点
    int query(int u, int v, int p, int pp, int l, int r, int k)
    {
    	if (l == r) return l;
    	int mid = l + r >> 1;
    	int num = tr[tr[u].lc].cnt + tr[tr[v].lc].cnt - tr[tr[p].lc].cnt - tr[tr[pp].lc].cnt;
    	if (k <= num) return query(tr[u].lc, tr[v].lc, tr[p].lc, tr[pp].lc, l, mid, k);
    	else return query(tr[u].rc, tr[v].rc, tr[p].rc, tr[pp].rc, mid + 1, r, k - num);
    }
    
    
    void dfs(int u, int father)
    {
    	fa[u][0] = father;
    	root[u] = insert(root[fa[u][0]], 0, nums.size() - 1, w[u]);
    	dep[u] = dep[father] + 1;
    	for (int i = 1; i <= 19; ++i) fa[u][i] = fa[fa[u][i - 1]][i - 1];
    	for (int i = h[u]; i != -1; i = ne[i])
    	{
    		int j = e[i];
    		if (j == father) continue;
    		dfs(j, u);
    	}
    }
    
    int lca(int a, int b)
    {
    	if (dep[a] < dep[b]) swap(a, b);
    	for (int k = 19; k >= 0; --k)
    	{
    		if (dep[fa[a][k]] >= dep[b])
    		{
    			a = fa[a][k];
    		}
    	}
    	if (a == b) return a;
    	for (int k = 19; k >= 0; --k)
    	{
    		if (fa[a][k] != fa[b][k])
    		{
    			a = fa[a][k];
    			b = fa[b][k];
    		}
    	}
    	return fa[a][0];
    }
    
    int main()
    {
    	scanf("%d%d", &n, &m);
    
    	for (int i = 1; i <= n; ++i)
    	{
    		scanf("%d", &w[i]);
    		nums.push_back(w[i]);//离散化值域
    	}
    
    	sort(nums.begin(), nums.end());
    	nums.erase(unique(nums.begin(), nums.end()), nums.end());
    
    	for (int i = 1; i <= n; ++i)
    	{
    		w[i] = lower_bound(nums.begin(), nums.end(), w[i]) - nums.begin();//存储离散化的位置
    	}
    	int u, v;
    	memset(h, -1, sizeof h);
    
    	for (int i = 1; i < n; ++i)
    	{
    		scanf("%d%d", &u, &v);
    		add(u, v), add(v, u);
    	}
    
    	dfs(1, 0);//插入
    
    	int k;
    	while (m--)
    	{
    		scanf("%d%d%d", &u, &v, &k);
    		int p = lca(u, v);
    		printf("%d
    ", nums[query(root[u], root[v], root[p], root[fa[p][0]], 0, nums.size() - 1, k)]);
    	}
    
    	return 0;
    }
    
  • 相关阅读:
    Hadoop概述
    Spring Security学习总结及源码分析
    Gradle在Mac上安装及Idea中配置
    MIT-6.S081-2020实验(xv6-riscv64)一:util
    数据库理论一些疑惑点
    com.mysql.jdbc.exceptions.jdbc4.MySQLTransactionRollbackException: Lock wait timeout exceeded; try restarting transaction
    vue Elemente-UI 管理后台自定义 导航菜单栏
    vue 处理跨域问题 (“No ‘Access-Control-Allow-Origin‘ header is present on the requested resource.”)
    修改伪元素content
    重写window.alert
  • 原文地址:https://www.cnblogs.com/pixel-Teee/p/13904634.html
Copyright © 2011-2022 走看看