zoukankan      html  css  js  c++  java
  • Codeforces 1120D (树形DP 或 最小生成树)

    题意看这篇博客:https://blog.csdn.net/dreaming__ldx/article/details/88418543

    思路看这篇:https://blog.csdn.net/corsica6/article/details/88115948

    有个坑点,不能深搜去找具体方案,不然 test14 会 MLE(或许是本蒟蒻写丑了)

    代码:

    #include <bits/stdc++.h>
    #define LL long long
    #define pii pair<int, int>
    using namespace std;
    const int maxn = 200010;
    int head[maxn], Next[maxn * 2], ver[maxn * 2], tot;
    int a[maxn];
    LL dp[maxn][2], sum[maxn], f[maxn];
    bool v[maxn][2];
    bool res[maxn];
    vector<int> ans;
    bool is_leaf[maxn];
    void add(int x, int y) {
    	ver[++tot] = y;
    	Next[tot] = head[x];
    	head[x] = tot;
    }
    void dfs1(int x, int fa) {
    	int cnt = 0;
    	f[x] = fa;
    	for (int i = head[x]; i; i = Next[i]) {
    		int y = ver[i];
    		if(y == fa) continue;
    		dfs1(y, x);
    		sum[x] += dp[y][0];
    		cnt++;
    	}
    	if(cnt == 0) {
    		dp[x][0] = a[x];
    		dp[x][1] = 0;
    		is_leaf[x] = 1;
    		return;
    	}
    	for (int i = head[x]; i; i = Next[i]) {
    		int y = ver[i];
    		if(y == fa) continue;
    		dp[x][0] = min(dp[x][0], sum[x] - dp[y][0] + dp[y][1] + a[x]);
    		dp[x][1] = min(dp[x][1], sum[x] - dp[y][0] + dp[y][1]);
    	}
    	dp[x][0] = min(dp[x][0], sum[x]);
    }
    
    void bfs() {
    	queue<pii> q;
    	q.push(make_pair(1, 0));
    	while(!q.empty()) {
    		pii tmp = q.front();
    		q.pop();
    		int x = tmp.first, flag = tmp.second;
    		if(v[x][flag]) continue;
    		v[x][flag] = 1;
    		if(flag == 0) {
    			int pos = -1, cnt = 0;
    			if(is_leaf[x]) {
    				res[x] = 1;
    				continue;
    			} 
    			for (int i = head[x]; i; i = Next[i]) {
    				int y = ver[i];
    				if(y == f[x]) continue;
    				if(dp[x][flag] == sum[x] - dp[y][0] + dp[y][1] + a[x]) {
    					if(v[y][1]) continue;
    					res[x] = 1;
    					q.push(make_pair(y, 1));
    					pos = y;
    					cnt++;
    				}
    			}
    			for (int i = head[x]; i; i = Next[i]) {
    				int y = ver[i];
    				if(v[y][0]) continue;
    				if(y == f[x] || y == pos) continue;
    				q.push(make_pair(y, 0));
    			}
    			if(cnt > 1 || (sum[x] == dp[x][0] && pos != -1)) {
    				if(v[pos][0]) continue;
    				q.push(make_pair(pos, 0));
    			}
    		} else {
    			int pos = -1, cnt = 0;
    			for (int i = head[x]; i; i = Next[i]) {
    				int y = ver[i];
    				if(y == f[x]) continue;
    				if(dp[x][flag] == sum[x] - dp[y][0] + dp[y][1]) {
    					if(v[y][1]) continue;
    					q.push(make_pair(y, 1));
    					pos = y;
    					cnt++;
    				}
    			}
    			for (int i = head[x]; i; i = Next[i]) {
    				int y = ver[i];
    				if(v[y][0]) continue;
    				if(y == f[x] || y == pos) continue;
    				q.push(make_pair(y, 0));
    			}
    			if(cnt > 1) {
    				if(v[pos][0]) continue;
    				q.push(make_pair(pos, 0));
    			}
    		}
    	}
    }
    int main() {
    	int n, x, y;
    	scanf("%d", &n);
    	for (int i = 1; i <= n; i++)
    		scanf("%d", &a[i]);
    	for (int i = 1; i < n; i++) {
    		scanf("%d%d", &x, &y);
    		add(x, y);
    		add(y, x);
    	}
    	memset(dp, 0x3f, sizeof(dp));
    	dfs1(1, -1);
    	bfs();
    	for (int i = 1; i <= n; i++) {
    		if(res[i])
    			ans.push_back(i);
    	}
    	printf("%lld %d
    ", dp[1][0], ans.size());
    	sort(ans.begin(), ans.end());
    	for (int i = 0; i < ans.size(); i++)
    		printf("%d ", ans[i]);
    	printf("
    ");
    }
    

    最小生成树解法先留个坑在这。。。

    补坑:

    思路看这篇博客:https://www.cnblogs.com/river-flows-in-you/p/10596821.html

    说一下我个人的理解:把每个叶子节点看成新图的顶点,对于原树中的每个顶点,我们可以计算出它影响哪些叶子节点,用差分的思想连边。只要求出了生成树就说明可以任意取,因为形成生成树之后,我们对每个点的赋值操作就可以类比在生成树上遍历的过程。

    代码:

    #include <bits/stdc++.h>
    #define LL long long
    #define INF 0x3f3f3f3f
    using namespace std;
    const int maxn = 200010;
    int head[maxn], Next[maxn * 2], ver[maxn * 2], tot;
    int sz[maxn], cnt, l[maxn], r[maxn], a[maxn], f[maxn];
    bool v[maxn];
    struct Edge{
    	int u, v, w, id;
    	bool operator < (const Edge& rhs) const {
    		return w < rhs.w;
    	}
    };
    Edge b[maxn];
    void add(int x, int y) {
    	ver[++tot] = y;
    	Next[tot] = head[x];
    	head[x] = tot;
    }
    void dfs(int x, int fa) {
    	sz[x] = 1;
    	l[x] = INF, r[x] = -1;
    	for (int i = head[x]; i; i = Next[i]) {
    		int y = ver[i];
    		if(y == fa) continue;
    		dfs(y, x);
    		sz[x] += sz[y];
    		l[x] = min(l[x], l[y]);
    		r[x] = max(r[x], r[y]);
    	}
    	if(sz[x] == 1) {
    		l[x] = r[x] = ++cnt;
    	}
    	b[x] = (Edge){l[x], r[x] + 1, a[x], x}; 
    }
    int get(int x) {
    	if(x == f[x]) return x;
    	return f[x] = get(f[x]);
    }
    int main() {
    	int n, x, y;
    	scanf("%d", &n);
    	int sum = 0;
    	LL ans = 0;
    	for (int i = 1; i <= n; i++)
    		scanf("%d", &a[i]);
    	for (int i = 1; i < n; i++) {
    		scanf("%d%d", &x, &y);
    		add(x, y);
    		add(y, x);
    	}
    	dfs(1, -1);
    	sort(b + 1, b + 1 + n);
    	cnt++;
    	for (int i = 1; i <= cnt; i++) f[i] = i;
    	for(int L = 1, R; L <= n; L = R + 1) {
    		R = L;
    		while(b[L].w == b[R + 1].w && R < n) R++;
    		for (int i = L; i <= R; i++) {
    			x = get(b[i].u), y = get(b[i].v);
    			if(x != y) {
    				v[b[i].id] = 1;
    				sum++;
    			}
    		}
    		for (int i = L; i <= R; i++) {
    			x = get(b[i].u), y = get(b[i].v);
    			if(x != y) {
    				ans += b[i].w;
    //				printf("%lld %d
    ", ans, b[i].w);
    				f[x] = y;
    			}
    		}
    	}
    //	printf("%lld %d
    ", ans, sum);
    	cout << ans << " " << sum << endl;
    	for (int i = 1; i <= n; i++)
    		if(v[i]) printf("%d ", i);
    } 
    

      

  • 相关阅读:
    configure: error: invalid variable name: `'
    [bzoj2002][Hnoi2010]Bounce弹飞绵羊——分块
    [bzoj2049][Sdoi2008]Cave 洞穴勘测——lct
    [bzoj4765]普通计算姬——分块
    [bzoj4766]文艺计算姬——完全二分图生成树个数
    [bzoj2243][SDOI2011]染色——树链剖分+线段树
    [bzoj3306]树——树上倍增+dfs序+线段树
    [bzoj1977][BeiJing2010组队]次小生成树 Tree——树上倍增+lca
    [bzoj3697]采药人的路径——点分治
    小蒟蒻的天坑
  • 原文地址:https://www.cnblogs.com/pkgunboat/p/10672172.html
Copyright © 2011-2022 走看看