Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
#include<iostream> #include<cstring> using namespace std; #define For(i,a,b) for(int i=a;i<=b;i++) #define ll long long #define mem(a,b) memset(a,b,sizeof(a)) #define mod 10000 struct mat { ll m[3][3]; }; mat a,e; mat ans; int n; mat mul(mat a,mat b) { mat c; mem(c.m,0); For(i,1,2) For(j,1,2) For(k,1,2) { c.m[i][j]+=a.m[i][k]*b.m[k][j]%mod; c.m[i][j]%=mod; } return c; } mat qmul(mat a,ll b) { mat ans=e; while(b) { if(b&1) ans=mul(ans,a); a=mul(a,a); b>>=1; } return ans; } int main() { For(i,1,2)e.m[i][i]=1; mem(a.m,0); a.m[1][1]=a.m[1][2]=a.m[2][1]=1; while(cin>>n&&n!=-1) { if(n==0) { cout<<0<<endl; continue; } mat ans=qmul(a,n-1); cout<<ans.m[1][1]%mod<<endl; } return 0; }
矩阵快速幂入门题