zoukankan      html  css  js  c++  java
  • Connect the Cities--hdoj

                                                Connect the Cities

    Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other)
    Total Submission(s) : 7   Accepted Submission(s) : 5
    Problem Description
    In 2100, since the sea level rise, most of the cities disappear. Though some survived cities are still connected with others, but most of them become disconnected. The government wants to build some roads to connect all of these cities again, but they don’t want to take too much money.  
     

    Input
    The first line contains the number of test cases. Each test case starts with three integers: n, m and k. n (3 <= n <=500) stands for the number of survived cities, m (0 <= m <= 25000) stands for the number of roads you can choose to connect the cities and k (0 <= k <= 100) stands for the number of still connected cities. To make it easy, the cities are signed from 1 to n. Then follow m lines, each contains three integers p, q and c (0 <= c <= 1000), means it takes c to connect p and q. Then follow k lines, each line starts with an integer t (2 <= t <= n) stands for the number of this connected cities. Then t integers follow stands for the id of these cities.
     

    Output
    For each case, output the least money you need to take, if it’s impossible, just output -1.
     

    Sample Input
    1 6 4 3 1 4 2 2 6 1 2 3 5 3 4 33 2 1 2 2 1 3 3 4 5 6
     

    Sample Output
    1
     

    Author
    dandelion
     

    Source
    HDOJ Monthly Contest – 2010.04.04



    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    using namespace std;
    #define INF 0xfffffff
    int map[505][505],mark[505],num[505];
    int main()
    {
    	int t;
    	scanf("%d",&t);
    	while(t--)
    	{
    		int i,j,m,n,k,a,b,c;
    		scanf("%d%d%d",&n,&m,&k);
    		for(i=0;i<=n;i++)
    		for(j=0;j<=n;j++)
    		map[i][j]=map[j][i]=INF;
    		for(i=0;i<m;i++)
    		{
    			scanf("%d%d%d",&a,&b,&c);
    			if(c<map[a][b])
    			map[a][b]=map[b][a]=c;
    		}
    		for(i=0;i<k;i++)
    		{
    			scanf("%d",&a);
    			for(j=0;j<a;j++)
    			scanf("%d",&num[j]);
    			for(j=0;j<a;j++)
    			for(int jj=j+1;jj<a;jj++)
    			{
    				map[num[j]][num[jj]]=map[num[jj]][num[j]]=0;
    			}
    		}
    		int sum=0,flog;
    		memset(mark,0,sizeof(mark));
    		for(i=2;i<=n;i++)
    		{
    			int min=INF;
    			flog=-1;
    			for(j=2;j<=n;j++)
    			{
    				if(!mark[j]&&map[1][j]<min)
    				{
    					flog=j;
    					min=map[1][j];
    				}
    			}
    			if(flog==-1) break;
    			mark[flog]=1;
    			sum+=map[1][flog];
    			for(j=2;j<=n;j++)
    			{
    				if(!mark[j]&&map[1][j]>map[flog][j])
    				map[1][j]=map[flog][j];
    			}
    		}
    		if(i>n)
    		printf("%d
    ",sum);
    		else printf("-1
    ");
    	}
    	return 0;
    }


  • 相关阅读:
    算法导论6.33习题解答
    最短子序列(最短摘要)
    算法导论83(b)习题解答(trie树)
    算法导论61习题解答
    算法导论8.24习题解答(计数排序)
    算法导论8.34习题解答(基数排序)
    算法导论6.57习题解答
    算法导论63习题解答(Young氏矩阵)
    算法导论6.58习题解答(最小堆K路合并)
    算法导论6.17习题解答
  • 原文地址:https://www.cnblogs.com/playboy307/p/5273839.html
Copyright © 2011-2022 走看看