zoukankan      html  css  js  c++  java
  • 矩阵的旋转

    热爱数学的 请移步这里  

    1.向量 表示为xy,在坐标系中往往表示为箭头终点位置比如[2 3]  x=2,y=3。

    2.矩阵相乘,一般来说都是向量的旋转,向量可以负数表示,i j的标量表示为向量在xy方向的缩放,向量的旋转就是 缩放量的线性放大和缩小。所以只要知道缩放后(旋转后)的一个向量(i,j帽),用之前的向量相乘,就可以得到每一个缩放后的向量。原来的i,j也作为向量旋转,我们要考究的就是最终ij作为的向量旋转了多少,它们变化也是线性的比例的,所以原本来的向量乘以ij代表的数据(原来的向量是一个向量 所以认为ij向量是不完整的i=  [x,0] ,y= [0,y]),两个二维矩阵相乘的小郭就是使用右边的矩阵的 ij 帽,分别乘以左边的矩阵,空间意义就是,对ij向量分别进行空间旋转和缩放后得到新的向量,组合成新的变换矩阵向量。

     3.矩阵为什么不支持左右交换相乘,m1*m2 != m2*m1。因为空间旋转转换两个步骤对调  最终形成的向量并不相同

    4.行列式的基本意义 ,计算二维行列式得到的,原来图形面积变化后的比例,压缩或者放大。计算三维行列式得到,三维体积的变化。

     adbc的意义,a d分别管理x y方向的放大缩小。bc管理倾斜与旋转。

    逆变换的意义 就是寻找一个空间还原的方法,所以一个矩阵乘以他的逆变换等于什么都不做。  对逆矩阵的求解的一个方法是 从空间上监测,变化积分(ijz 基变量)的变化,就是矩阵变化过程中监测向量的移动对基变量的积分从而得到结果。

    对于空间变换 逆变换 仍然有很多的特殊情况。纬度不能发生变化,比如二维变三维或者三维变二维,这种情况下,无法通过现有的数据从二维还原为三维。所以不存在逆矩阵。特例

    秩 就是纬度

  • 相关阅读:
    spring与springmvc父子容器
    spring容器BeanFactory简单例子
    spring整体架构
    css中".",",",“~”和“>”符号的意义
    CSS中的块级元素与行级元素
    java反射和动态代理
    thymeleaf的fragment例子
    编写一个简单的 JDBC 程序
    http://localhost/ 或 http://127.0.0.1/ 报错:HTTP 404 的解决办法
    教你如何清除 MyEclipse/Eclipse 中 Web Browser 和 Switch Workspace 的历史记录
  • 原文地址:https://www.cnblogs.com/polar-lights/p/15433021.html
Copyright © 2011-2022 走看看