zoukankan      html  css  js  c++  java
  • MNIST 例程源码分析 TensorFlow 从入门到精通

    按照上节步骤, TensorFlow 默认安装在 /usr/lib/python/site-packages/tensorflow/ (也有可能是 /usr/local/lib……)下,查看目录结构:

      1 # tree -d -L 3 /usr/lib/python2.7/site-packages/tensorflow/
      2 /usr/lib/python2.7/site-packages/tensorflow/
      3 ├── contrib
      4 │   ├── bayesflow
      5 │   │   └── python
      6 │   ├── cmake
      7 │   ├── copy_graph
      8 │   │   └── python
      9 │   ├── crf
     10 │   │   └── python
     11 │   ├── cudnn_rnn
     12 │   │   ├── ops
     13 │   │   └── python
     14 │   ├── distributions
     15 │   │   └── python
     16 │   ├── factorization
     17 │   │   └── python
     18 │   ├── ffmpeg
     19 │   │   └── ops
     20 │   ├── framework
     21 │   │   └── python
     22 │   ├── graph_editor
     23 │   ├── grid_rnn
     24 │   │   └── python
     25 │   ├── layers
     26 │   │   ├── ops
     27 │   │   └── python
     28 │   ├── learn
     29 │   │   └── python
     30 │   ├── linear_optimizer
     31 │   │   ├── ops
     32 │   │   └── python
     33 │   ├── lookup
     34 │   ├── losses
     35 │   │   └── python
     36 │   ├── metrics
     37 │   │   ├── ops
     38 │   │   └── python
     39 │   ├── opt
     40 │   │   └── python
     41 │   ├── quantization
     42 │   │   ├── kernels
     43 │   │   ├── ops
     44 │   │   └── python
     45 │   ├── rnn
     46 │   │   └── python
     47 │   ├── session_bundle
     48 │   ├── slim
     49 │   │   └── python
     50 │   ├── tensorboard
     51 │   │   └── plugins
     52 │   ├── tensor_forest
     53 │   │   ├── client
     54 │   │   ├── data
     55 │   │   ├── hybrid
     56 │   │   └── python
     57 │   ├── testing
     58 │   │   └── python
     59 │   ├── training
     60 │   │   └── python
     61 │   └── util
     62 ├── core
     63 │   ├── example
     64 │   ├── framework
     65 │   ├── lib
     66 │   │   └── core
     67 │   ├── protobuf
     68 │   └── util
     69 ├── examples
     70 │   └── tutorials
     71 │       └── mnist
     72 ├── include
     73 │   ├── Eigen
     74 │   │   └── src
     75 │   ├── external
     76 │   │   └── eigen_archive
     77 │   ├── google
     78 │   │   └── protobuf
     79 │   ├── tensorflow
     80 │   │   └── core
     81 │   ├── third_party
     82 │   │   └── eigen3
     83 │   └── unsupported
     84 │       └── Eigen
     85 ├── models
     86 │   ├── embedding
     87 │   ├── image
     88 │   │   ├── alexnet
     89 │   │   ├── cifar10
     90 │   │   ├── imagenet
     91 │   │   └── mnist
     92 │   └── rnn
     93 │       ├── ptb
     94 │       └── translate
     95 ├── python
     96 │   ├── client
     97 │   ├── debug
     98 │   │   └── cli
     99 │   ├── framework
    100 │   ├── lib
    101 │   │   ├── core
    102 │   │   └── io
    103 │   ├── ops
    104 │   ├── platform
    105 │   ├── saved_model
    106 │   ├── summary
    107 │   │   └── impl
    108 │   ├── training
    109 │   ├── user_ops
    110 │   └── util
    111 │       └── protobuf
    112 ├── tensorboard
    113 │   ├── backend
    114 │   ├── dist
    115 │   ├── lib
    116 │   │   ├── css
    117 │   │   └── python
    118 │   └── plugins
    119 │       └── projector
    120 └── tools
    121     └── pip_package
    122 
    123 119 directories

    上节运行 MNIST 例程的命令为:

    # python -m tensorflow.models.image.mnist.convolutional
    对应文件为 /usr/lib/python2.7/site-packages/tensorflow/models/image/mnist/convolutional.py

    打开例程源码:

      1 # Copyright 2015 Google Inc. All Rights Reserved.
      2 #
      3 # Licensed under the Apache License, Version 2.0 (the "License");
      4 # you may not use this file except in compliance with the License.
      5 # You may obtain a copy of the License at
      6 #
      7 #     http://www.apache.org/licenses/LICENSE-2.0
      8 #
      9 # Unless required by applicable law or agreed to in writing, software
     10 # distributed under the License is distributed on an "AS IS" BASIS,
     11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 # See the License for the specific language governing permissions and
     13 # limitations under the License.
     14 # ==============================================================================
     15 
     16 """Simple, end-to-end, LeNet-5-like convolutional MNIST model example.
     17 
     18 This should achieve a test error of 0.7%. Please keep this model as simple and
     19 linear as possible, it is meant as a tutorial for simple convolutional models.
     20 Run with --self_test on the command line to execute a short self-test.
     21 """
     22 from __future__ import absolute_import
     23 from __future__ import division
     24 from __future__ import print_function
     25 
     26 import gzip
     27 import os
     28 import sys
     29 import time
     30 
     31 import numpy
     32 from six.moves import urllib
     33 from six.moves import xrange  # pylint: disable=redefined-builtin
     34 import tensorflow as tf
     35 
     36 # 数据源
     37 SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
     38 # 工作目录,存放下载的数据
     39 WORK_DIRECTORY = 'data'
     40 # MNIST 数据集特征: 
     41 #     图像尺寸 28x28 
     42 IMAGE_SIZE = 28
     43 #     黑白图像
     44 NUM_CHANNELS = 1
     45 #     像素值0~255 
     46 PIXEL_DEPTH = 255
     47 #     标签分10个类别
     48 NUM_LABELS = 10
     49 #     验证集共 5000 个样本
     50 VALIDATION_SIZE = 5000  
     51 # 随机数种子,可设为 None 表示真的随机
     52 SEED = 66478 
     53 # 批处理大小为64
     54 BATCH_SIZE = 64
     55 # 数据全集一共过10遍网络
     56 NUM_EPOCHS = 10
     57 # 验证集批处理大小也是64
     58 EVAL_BATCH_SIZE = 64
     59 # 验证时间间隔,每训练100个批处理,做一次评估
     60 EVAL_FREQUENCY = 100  
     61 
     62 
     63 tf.app.flags.DEFINE_boolean("self_test", False, "True if running a self test.")
     64 FLAGS = tf.app.flags.FLAGS
     65 
     66 # 如果下载过了数据,就不再重复下载
     67 def maybe_download(filename):
     68   """Download the data from Yann's website, unless it's already here."""
     69   if not tf.gfile.Exists(WORK_DIRECTORY):
     70     tf.gfile.MakeDirs(WORK_DIRECTORY)
     71   filepath = os.path.join(WORK_DIRECTORY, filename)
     72   if not tf.gfile.Exists(filepath):
     73     filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
     74     with tf.gfile.GFile(filepath) as f:
     75       size = f.Size()
     76     print('Successfully downloaded', filename, size, 'bytes.')
     77   return filepath
     78 
     79 # 抽取数据,变为 4维张量[图像索引,y, x, c]
     80 # 去均值、做归一化,范围变到[-0.5, 0.5]
     81 def extract_data(filename, num_images):
     82   """Extract the images into a 4D tensor [image index, y, x, channels].
     83 
     84   Values are rescaled from [0, 255] down to [-0.5, 0.5].
     85   """
     86   print('Extracting', filename)
     87   with gzip.open(filename) as bytestream:
     88     bytestream.read(16)
     89     buf = bytestream.read(IMAGE_SIZE * IMAGE_SIZE * num_images)
     90     data = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.float32)
     91     data = (data - (PIXEL_DEPTH / 2.0)) / PIXEL_DEPTH
     92     data = data.reshape(num_images, IMAGE_SIZE, IMAGE_SIZE, 1)
     93 return data
     94 
     95 # 抽取图像标签
     96 def extract_labels(filename, num_images):
     97   """Extract the labels into a vector of int64 label IDs."""
     98   print('Extracting', filename)
     99   with gzip.open(filename) as bytestream:
    100     bytestream.read(8)
    101     buf = bytestream.read(1 * num_images)
    102     labels = numpy.frombuffer(buf, dtype=numpy.uint8).astype(numpy.int64)
    103   return labels
    104 
    105 # 假数据,用于功能自测
    106 def fake_data(num_images):
    107   """Generate a fake dataset that matches the dimensions of MNIST."""
    108   data = numpy.ndarray(
    109       shape=(num_images, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS),
    110       dtype=numpy.float32)
    111   labels = numpy.zeros(shape=(num_images,), dtype=numpy.int64)
    112   for image in xrange(num_images):
    113     label = image % 2
    114     data[image, :, :, 0] = label - 0.5
    115     labels[image] = label
    116   return data, labels
    117 # 计算分类错误率
    118 def error_rate(predictions, labels):
    119   """Return the error rate based on dense predictions and sparse labels."""
    120   return 100.0 - (
    121       100.0 *
    122       numpy.sum(numpy.argmax(predictions, 1) == labels) /
    123 predictions.shape[0])
    124 
    125 
    126 
    127 
    128 # 主函数
    129 def main(argv=None):  # pylint: disable=unused-argument
    130   if FLAGS.self_test:
    131     print('Running self-test.')
    132     train_data, train_labels = fake_data(256)
    133     validation_data, validation_labels = fake_data(EVAL_BATCH_SIZE)
    134     test_data, test_labels = fake_data(EVAL_BATCH_SIZE)
    135     num_epochs = 1
    136   else:
    137     # 下载数据
    138     train_data_filename = maybe_download('train-images-idx3-ubyte.gz')
    139     train_labels_filename = maybe_download('train-labels-idx1-ubyte.gz')
    140     test_data_filename = maybe_download('t10k-images-idx3-ubyte.gz')
    141     test_labels_filename = maybe_download('t10k-labels-idx1-ubyte.gz')
    142 
    143     # 载入数据到numpy
    144     train_data = extract_data(train_data_filename, 60000)
    145     train_labels = extract_labels(train_labels_filename, 60000)
    146     test_data = extract_data(test_data_filename, 10000)
    147     test_labels = extract_labels(test_labels_filename, 10000)
    148 
    149     # 产生评测集
    150     validation_data = train_data[:VALIDATION_SIZE, ...]
    151     validation_labels = train_labels[:VALIDATION_SIZE]
    152     train_data = train_data[VALIDATION_SIZE:, ...]
    153     train_labels = train_labels[VALIDATION_SIZE:]
    154     num_epochs = NUM_EPOCHS
    155   train_size = train_labels.shape[0]
    156 
    157 # 训练样本和标签将从这里送入网络。
    158 # 每训练迭代步,占位符节点将被送入一个批处理数据
    159 # 训练数据节点
    160   train_data_node = tf.placeholder(
    161       tf.float32,
    162 shape=(BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS))
    163 # 训练标签节点
    164   train_labels_node = tf.placeholder(tf.int64, shape=(BATCH_SIZE,))
    165 # 评测数据节点
    166   eval_data = tf.placeholder(
    167       tf.float32,
    168       shape=(EVAL_BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS))
    169 
    170 # 下面这些变量是网络的可训练权值
    171 # conv1 权值维度为 32 x channels x 5 x 5, 32 为特征图数目
    172   conv1_weights = tf.Variable(
    173       tf.truncated_normal([5, 5, NUM_CHANNELS, 32],  # 5x5 filter, depth 32.
    174                           stddev=0.1,
    175                           seed=SEED))
    176 # conv1 偏置
    177   conv1_biases = tf.Variable(tf.zeros([32]))
    178 # conv2 权值维度为 64 x 32 x 5 x 5 
    179   conv2_weights = tf.Variable(
    180       tf.truncated_normal([5, 5, 32, 64],
    181                           stddev=0.1,
    182                           seed=SEED))
    183   conv2_biases = tf.Variable(tf.constant(0.1, shape=[64]))
    184 # 全连接层 fc1 权值,神经元数目为512
    185   fc1_weights = tf.Variable(  # fully connected, depth 512.
    186       tf.truncated_normal(
    187           [IMAGE_SIZE // 4 * IMAGE_SIZE // 4 * 64, 512],
    188           stddev=0.1,
    189           seed=SEED))
    190   fc1_biases = tf.Variable(tf.constant(0.1, shape=[512]))
    191 # fc2 权值,维度与标签类数目一致
    192   fc2_weights = tf.Variable(
    193       tf.truncated_normal([512, NUM_LABELS],
    194                           stddev=0.1,
    195                           seed=SEED))
    196   fc2_biases = tf.Variable(tf.constant(0.1, shape=[NUM_LABELS]))
    197 
    198 # 两个网络:训练网络和评测网络
    199 # 它们共享权值
    200 
    201 # 实现 LeNet-5 模型,该函数输入为数据,输出为fc2的响应
    202 # 第二个参数区分训练网络还是评测网络
    203   def model(data, train=False):
    204 """The Model definition."""
    205 # 二维卷积,使用“不变形”补零(即输出特征图与输入尺寸一致)。
    206     conv = tf.nn.conv2d(data,
    207                         conv1_weights,
    208                         strides=[1, 1, 1, 1],
    209                         padding='SAME')
    210     # 加偏置、过激活函数一块完成
    211 relu = tf.nn.relu(tf.nn.bias_add(conv, conv1_biases))
    212     # 最大值下采样
    213     pool = tf.nn.max_pool(relu,
    214                           ksize=[1, 2, 2, 1],
    215                           strides=[1, 2, 2, 1],
    216                           padding='SAME')
    217     # 第二个卷积层
    218     conv = tf.nn.conv2d(pool,
    219                         conv2_weights,
    220                         strides=[1, 1, 1, 1],
    221                         padding='SAME')
    222     relu = tf.nn.relu(tf.nn.bias_add(conv, conv2_biases))
    223     pool = tf.nn.max_pool(relu,
    224                           ksize=[1, 2, 2, 1],
    225                           strides=[1, 2, 2, 1],
    226                           padding='SAME')
    227 # 特征图变形为2维矩阵,便于送入全连接层
    228     pool_shape = pool.get_shape().as_list()
    229     reshape = tf.reshape(
    230         pool,
    231         [pool_shape[0], pool_shape[1] * pool_shape[2] * pool_shape[3]])
    232 # 全连接层,注意“+”运算自动广播偏置
    233     hidden = tf.nn.relu(tf.matmul(reshape, fc1_weights) + fc1_biases)
    234 # 训练阶段,增加 50% dropout;而评测阶段无需该操作
    235     if train:
    236       hidden = tf.nn.dropout(hidden, 0.5, seed=SEED)
    237     return tf.matmul(hidden, fc2_weights) + fc2_biases
    238 
    239   # Training computation: logits + cross-entropy loss.
    240   # 训练阶段计算: 对数+交叉熵 损失函数
    241   logits = model(train_data_node, True)
    242   loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
    243       logits, train_labels_node))
    244 
    245 
    246   # 全连接层参数进行 L2 正则化
    247   regularizers = (tf.nn.l2_loss(fc1_weights) + tf.nn.l2_loss(fc1_biases) +
    248                   tf.nn.l2_loss(fc2_weights) + tf.nn.l2_loss(fc2_biases))
    249   # 将正则项加入损失函数
    250   loss += 5e-4 * regularizers
    251 
    252   # 优化器: 设置一个变量,每个批处理递增,控制学习速率衰减
    253   batch = tf.Variable(0)
    254   # 指数衰减
    255   learning_rate = tf.train.exponential_decay(
    256       0.01,                # 基本学习速率
    257       batch * BATCH_SIZE,  # 当前批处理在数据全集中的位置
    258       train_size,          # Decay step.
    259       0.95,                # Decay rate.
    260       staircase=True)
    261   # Use simple momentum for the optimization.
    262   optimizer = tf.train.MomentumOptimizer(learning_rate,
    263                                          0.9).minimize(loss,
    264                                                        global_step=batch)
    265 
    266   # 用softmax 计算训练批处理的预测概率
    267   train_prediction = tf.nn.softmax(logits)
    268 
    269   # 用 softmax 计算评测批处理的预测概率
    270   eval_prediction = tf.nn.softmax(model(eval_data))
    271 
    272   # Small utility function to evaluate a dataset by feeding batches of data to
    273   # {eval_data} and pulling the results from {eval_predictions}.
    274   # Saves memory and enables this to run on smaller GPUs.
    275   def eval_in_batches(data, sess):
    276     """Get all predictions for a dataset by running it in small batches."""
    277     size = data.shape[0]
    278     if size < EVAL_BATCH_SIZE:
    279       raise ValueError("batch size for evals larger than dataset: %d" % size)
    280     predictions = numpy.ndarray(shape=(size, NUM_LABELS), dtype=numpy.float32)
    281     for begin in xrange(0, size, EVAL_BATCH_SIZE):
    282       end = begin + EVAL_BATCH_SIZE
    283       if end <= size:
    284         predictions[begin:end, :] = sess.run(
    285             eval_prediction,
    286             feed_dict={eval_data: data[begin:end, ...]})
    287       else:
    288         batch_predictions = sess.run(
    289             eval_prediction,
    290             feed_dict={eval_data: data[-EVAL_BATCH_SIZE:, ...]})
    291         predictions[begin:, :] = batch_predictions[begin - size:, :]
    292     return predictions
    293 
    294 
    295   # Create a local session to run the training.
    296   start_time = time.time()
    297   with tf.Session() as sess:
    298     # Run all the initializers to prepare the trainable parameters.
    299     tf.initialize_all_variables().run()
    300     print('Initialized!')
    301     # Loop through training steps.
    302     for step in xrange(int(num_epochs * train_size) // BATCH_SIZE):
    303       # Compute the offset of the current minibatch in the data.
    304       # Note that we could use better randomization across epochs.
    305       offset = (step * BATCH_SIZE) % (train_size - BATCH_SIZE)
    306       batch_data = train_data[offset:(offset + BATCH_SIZE), ...]
    307       batch_labels = train_labels[offset:(offset + BATCH_SIZE)]
    308       # This dictionary maps the batch data (as a numpy array) to the
    309       # node in the graph it should be fed to.
    310       feed_dict = {train_data_node: batch_data,
    311                    train_labels_node: batch_labels}
    312       # Run the graph and fetch some of the nodes.
    313       _, l, lr, predictions = sess.run(
    314           [optimizer, loss, learning_rate, train_prediction],
    315           feed_dict=feed_dict)
    316       if step % EVAL_FREQUENCY == 0:
    317         elapsed_time = time.time() - start_time
    318         start_time = time.time()
    319         print('Step %d (epoch %.2f), %.1f ms' %
    320               (step, float(step) * BATCH_SIZE / train_size,
    321                1000 * elapsed_time / EVAL_FREQUENCY))
    322         print('Minibatch loss: %.3f, learning rate: %.6f' % (l, lr))
    323         print('Minibatch error: %.1f%%' % error_rate(predictions, batch_labels))
    324         print('Validation error: %.1f%%' % error_rate(
    325             eval_in_batches(validation_data, sess), validation_labels))
    326         sys.stdout.flush()
    327     # Finally print the result!
    328     test_error = error_rate(eval_in_batches(test_data, sess), test_labels)
    329     print('Test error: %.1f%%' % test_error)
    330     if FLAGS.self_test:
    331       print('test_error', test_error)
    332       assert test_error == 0.0, 'expected 0.0 test_error, got %.2f' % (
    333           test_error,)
    334 # 程序入口点
    335 if __name__ == '__main__':
    336   tf.app.run()

      如果还有问题未能得到解决,搜索887934385交流群,进入后下载资料工具安装包等。最后,感谢观看!
  • 相关阅读:
    【AppScan心得】IBM Rational AppScan 无法记录登录序列
    tomcat记录XForwardedFor字段中的远程IP
    【AppScan深入浅出】修复漏洞:会话标识未更新(中危)
    用java在Windows控制台输出utf8字符
    【图解漏洞】图解跨站脚本攻击(XSS)原理
    【图解漏洞】图解跨站请求伪造(CSRF)原理(之二)
    雅克比矩阵(Jacobian Matrix)在正运动学中的应用
    游戏物理引擎之静态碰撞
    万向节死锁(Gimbal Lock)
    旋转矩阵(Rotate Matrix)的性质分析
  • 原文地址:https://www.cnblogs.com/pypypy/p/11845816.html
Copyright © 2011-2022 走看看