zoukankan      html  css  js  c++  java
  • 机器学习实战之决策树

    决策树优特点:
    优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特
    征数据。
    缺点:可能会产生过度匹配问题。
    适用数据类型:数值型和标称型

    使用ID3算法划分数据集并构建决策树:

    from math import log
    import pickle
    
    #计算香农熵
    def calcShannonEnt(dataSet):
        numEntries = len(dataSet)
        labelCounts = { }
        # 统计每个label数据集的个数
        for featVec in dataSet:
            currentLabel = featVec[-1]
            if(currentLabel not in labelCounts.keys()):
                labelCounts[currentLabel] = 0
            labelCounts[currentLabel] += 1
        # 计算香农熵
        shannonEnt = 0.0
        for key in labelCounts:
            prob = float(labelCounts[key]) / float(numEntries);
            shannonEnt -= prob * log(prob, 2)
            
        return shannonEnt
            
    #creat data set just for test funcations
    def creatDataSet():
        dataSet = [[1, 1, 'yes'],
                   [1, 1, 'yes'],
                   [1, 0, 'no'],
                   [0, 1, 'no'],
                   [0, 1, 'no']]
        labels = ['no surfacing', 'flippers']
        return dataSet, labels
    
    # 按照给定特征 和 特征值 划分数据集(提取数据集)
    def splitDataSet(dataSet, axis, value):
        retDataSet = []
        for i in dataSet:
            if i[axis] == value:
                dataTemp = i[:axis]
                dataTemp.extend(i[axis+1:])
                retDataSet.append(dataTemp)
    
        return retDataSet
    
    # 利用信息增益寻找最好的数据集划分方式,返回最适合特征值的索引
    def chooseBestFeatureToSplit(dataSet):
        numFeatures = len(dataSet[0]) - 1
        # 初始信息熵
        baseShannonEnt = calcShannonEnt(dataSet)
        # 最大信息熵
        bestInfoGain = 0.0
        # 最好特征值
        bestFeature = -1
        # 寻找使得信息增益最大的划分方式
        for i in range(numFeatures):
            featList = [example[i] for example in dataSet]
            uniqueFeatList = set(featList)
            newEnt = 0.0
            for feature in uniqueFeatList:
                subDataSet = splitDataSet(dataSet, i, feature)
                prob = float(len(subDataSet)) / float(len(dataSet))
                newEnt += prob * calcShannonEnt(subDataSet)
                
            infoGain = baseShannonEnt - newEnt
            if(infoGain > bestInfoGain):
                bestInfoGain = infoGain
                bestFeature = i
                
        return bestFeature
    
    # 当特征值被消耗完,但是剩余数据集并不是同一类时,进行投票
    def majorityCnt(classList):
        classCount = { }
        for i in classList:
            if (i not in classCount.keys()):
                classCount[i] = 0
            classCount[i] += 1
            
        sortedClassCount = sorted(classCount.items(), key = lambda item:item[1], reverse = True)
        return sortedClassCount[0][0]
    
    # 构造决策树
    def creatTree(dataSet, label):
        labels = label[:]
        classList = [example[-1] for example in dataSet]
        # 类别完全相同时,停止划分, 返回类别
        if classList.count(classList[0]) == len(classList):
            return classList[0]
        # 当所有特征都已经被消耗完毕
        if len(dataSet[0]) == 1:
            return majorityCnt(classList)
        # 寻找最好的划分特征值
        bestFeat = chooseBestFeatureToSplit(dataSet)
        bestFeatLabel = labels[bestFeat]
        
        myTree = {bestFeatLabel:{ }}
        del(labels[bestFeat])
        
        featValues = [example[bestFeat] for example in dataSet]
        uniqueFeatValues = set(featValues)
        for value in uniqueFeatValues:
            subLabels = labels[:]
            myTree[bestFeatLabel][value] = creatTree(splitDataSet(dataSet, bestFeat, value), subLabels)
            
        return myTree
    
    # 使用构造好的决策树对测试集进行分类
    def classify(inputTree, featLabels, testVector):
        firstStr = list(inputTree.keys())[0]
        secondDict = inputTree[firstStr]
        featIndex = featLabels.index(firstStr)
        for key in secondDict.keys():
            if testVector[featIndex] == key:
                if type(secondDict[key]).__name__ == 'dict':
                    classType = classify(secondDict[key], featLabels, testVector)
                else:
                    classType = secondDict[key]
        
        return classType
    
    # 存储决策树
    def storeTree(inputTree, fileName):
        fw = open(fileName, 'wb')
        pickle.dump(inputTree, fw)
        fw.close()
    
        
    #读取决策树
    def grabTree(fileName):
        fr = open(fileName, 'rb')
        return pickle.load(fr)
    
    fr = open("lenses.txt")
    allLines = fr.readlines()
    lensesDataSet = [line.strip().split('	') for line in allLines]
    lensesLabels = ['age', 'prescript', 'astigmatic', 'rearRate']
    
    lensesTree = creatTree(lensesDataSet, lensesLabels)

    利用matplotlib注解绘制树形图:

    import matplotlib.pyplot as plt
    import pickle
    
    decisionNode = dict(boxstyle = "sawtooth", fc = "0.8")
    leafNode = dict(boxstyle = "round4", fc = "0.8")
    arrow_args = dict(arrowstyle = "<-")
    
    def retrieveTree(i):
        listOfTrees =[{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}},
                      {'no surfacing': {0: 'no', 1: {'flippers': {0: {'head': {0: 'no', 1: 'yes'}}, 1: 'no'}}}}
                      ]
        return listOfTrees[i]
    
    def getNumLeafs(myTree):
        numLeafs = 0
        firstStr = list(myTree.keys())[0]
        secondDict = myTree[firstStr]
        for key in secondDict.keys():
            if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes
                numLeafs += getNumLeafs(secondDict[key])
            else:   numLeafs +=1
        return numLeafs
    
    def getTreeDepth(myTree):
        maxDepth = 0
        firstStr = list(myTree.keys())[0]
        secondDict = myTree[firstStr]
        for key in secondDict.keys():
            if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes
                thisDepth = 1 + getTreeDepth(secondDict[key])
            else:   thisDepth = 1
            if thisDepth > maxDepth: maxDepth = thisDepth
        return maxDepth
    
    def plotNode(nodeTxt, centerPt, parentPt, nodeType):
        createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords='axes fraction',
                 xytext=centerPt, textcoords='axes fraction',
                 va="center", ha="center", bbox=nodeType, arrowprops=arrow_args )
    
    def plotMidText(cntrPt, parentPt, txtString):
        xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
        yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
        createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)
    
    def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you what feat was split on
        numLeafs = getNumLeafs(myTree)  #this determines the x width of this tree
        depth = getTreeDepth(myTree)
        firstStr = list(myTree.keys())[0]     #the text label for this node should be this
        cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
        plotMidText(cntrPt, parentPt, nodeTxt)
        plotNode(firstStr, cntrPt, parentPt, decisionNode)
        secondDict = myTree[firstStr]
        plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
        for key in secondDict.keys():
            if type(secondDict[key]).__name__=='dict':#test to see if the nodes are dictonaires, if not they are leaf nodes   
                plotTree(secondDict[key],cntrPt,str(key))        #recursion
            else:   #it's a leaf node print the leaf node
                plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
                plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
                plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
        plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
    #if you do get a dictonary you know it's a tree, and the first element will be another dict
    
    def createPlot(inTree):
        fig = plt.figure(1, facecolor='white')
        fig.clf()
        axprops = dict(xticks=[], yticks=[])
        createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)    #no ticks
        #createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses 
        plotTree.totalW = float(getNumLeafs(inTree))
        plotTree.totalD = float(getTreeDepth(inTree))
        plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
        plotTree(inTree, (0.5,1.0), '')
        plt.show()
    
    # 存储决策树
    def storeTree(inputTree, fileName):
        fw = open(fileName, 'wb')
        pickle.dump(inputTree, fw)
        fw.close()
    
        
    #读取决策树
    def grabTree(fileName):
        fr = open(fileName, 'rb')
        return pickle.load(fr)
    myTree = grabTree('lensesTree.txt')
    createPlot(myTree)

    数据集下载以及完整jupyter notebook 代码下载:

    https://github.com/qwqwqw110/machineLearningInactionCode/tree/master/%E5%86%B3%E7%AD%96%E6%A0%91

  • 相关阅读:
    JSAJAX请求
    ES6-形参默认值
    ES6-三点运算符
    ES6-箭头函数
    ES6-对象的简写方式
    ES6-使用模板字符串完成字符串拼接
    201712-2 游戏
    Product of Polynomials
    Maximum Subsequence Sum
    蓝桥杯 龟兔赛跑预测
  • 原文地址:https://www.cnblogs.com/qiang-wei/p/10719917.html
Copyright © 2011-2022 走看看