zoukankan      html  css  js  c++  java
  • 最小二乘法矩阵求导求解

    转载来自:http://blog.csdn.net/acdreamers/article/details/44662633

    关于最小二乘问题的求解,之前已有梯度下降法,还有比较快速的牛顿迭代。今天来介绍一种方法,是基于矩阵求导来计算的,它的计算方式更加简洁高效,不需要大量迭代,只需解一个正规方程组。在开始之前,首先来认识一个概念和一些用到的定理。矩阵的迹定义如下

    一个的矩阵的迹是指的主对角线上各元素的总和,记作。即

               

                            

                 

    好了,有了上述7个定理,就可以来求最小二乘解了。设

      

    那么进一步得到

        

    接下来会涉及到矩阵求导,因为

        

    那么进一步利用矩阵求导并利用上述定理,得到

        

    我们知道在极值点处梯度值为零,即

        

    上述得到的方程组叫做正规方程组,那么最终得到

        

    这样最小二乘问题只需解一个线性方程组即可,不再需要像梯度下降那样迭代了。

    既然说到了正规方程组,在介绍一种方程组,叫做超定方程组,它的定义为:把方程个数大于未知量个数的方

    程组叫做超定方程组。通常来说,对于一个超定方程组来说,求最小二乘解只需要两边同时乘的转

    置,然后得到正规方程组,然后解这个方程就得到了最小二乘解。

  • 相关阅读:
    10055
    国外程序员推荐:每个程序员都应该读的非编程书
    Volume 0. Getting Started
    如何成为一名 Google 软件工程师?【Google招聘信息】作者: 丁鑫哲
    毕设-家校通
    如何快速创建数据库连接字符串
    LeetCode day13
    LeetCode day12
    LeetCode day11
    LeetCode day10 Called it
  • 原文地址:https://www.cnblogs.com/qianxiayi/p/9025400.html
Copyright © 2011-2022 走看看