1.顶堆
C++11中,针对顺序容器(如vector、deque、list),新标准引入了三个新成员:emplace_front、emplace和emplace_back,这些操作构造而不是拷贝元素。这些操作分别对应push_front、insert和push_back,允许我们将元素放置在容器头部、一个指定位置之前或容器尾部
priority_queue 默认从大到小排序, 从小到大:priority_queue<int, vector<int>, greater<int> > p;
pair举例
//默认是使用大根堆
priority_queue<pair<int,int>> pq0;
//小根堆,按照pair的first排,再按照second排序
priority_queue<pair<int,int>,vector<pair<int,int>>,greater<pair<int,int>>> pq1;
//大根堆
priority_queue<pair<int,int>,vector<pair<int,int>>,less<pair<int,int>>> pq2;
tuple举例
//默认是使用大根堆
priority_queue<tuple<int,int,int>> tp0;
//小根堆,按照tuple的0元素排,再按照1元素排,最后按2元素排
priority_queue<tuple<int,int,int>,vector<tuple<int,int,int>>,greater<tuple<int,int,int>>> tp1;
//大根堆
priority_queue<tuple<int,int,int>,vector<tuple<int,int,int>>,less<tuple<int,int,int>>> tp2;
2.元组tuple
tuple是一个固定大小的不同类型值的集合,是泛化的std::pair。我们也可以把他当做一个通用的结构体来用,不需要创建结构体又获取结构体的特征,在某些情况下可以取代结构体使程序更简洁,直观。std::tuple理论上可以有无数个任意类型的成员变量,而std::pair只能是2个成员,因此在需要保存3个及以上的数据时就需要使用tuple元组了。
tuple获取指定位置的值:
auto d = get<0>(tmp);
auto x = get<1>(tmp);
auto y = get<2>(tmp);
3.lamda表达式
C++11的一大亮点就是引入了Lambda表达式。利用Lambda表达式,可以方便的定义和创建匿名函数。对于C++这门语言来说来说,“Lambda表达式”或“匿名函数”这些概念听起来好像很深奥,但很多高级语言在很早以前就已经提供了Lambda表达式的功能,如C#,Python等。今天,我们就来简单介绍一下C++中Lambda表达式的简单使用。
声明Lambda表达式
Lambda表达式完整的声明格式如下:
[capture list] (params list) mutable exception-> return type { function body }
各项具体含义如下
- capture list:捕获外部变量列表
- params list:形参列表
- mutable指示符:用来说用是否可以修改捕获的变量
- exception:异常设定
- return type:返回类型
- function body:函数体
此外,我们还可以省略其中的某些成分来声明“不完整”的Lambda表达式,常见的有以下几种:
序号 | 格式 |
---|---|
1 | [capture list] (params list) -> return type {function body} |
2 | [capture list] (params list) {function body} |
3 | [capture list] {function body} |
其中:
- 格式1声明了const类型的表达式,这种类型的表达式不能修改捕获列表中的值。
- 格式2省略了返回值类型,但编译器可以根据以下规则推断出Lambda表达式的返回类型: (1):如果function body中存在return语句,则该Lambda表达式的返回类型由return语句的返回类型确定; (2):如果function body中没有return语句,则返回值为void类型。
-
格式3中省略了参数列表,类似普通函数中的无参函数。
讲了这么多,我们还没有看到Lambda表达式的庐山真面目,下面我们就举一个实例。
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
bool cmp(int a, int b)
{
return a < b;
}
int main()
{
vector<int> myvec{ 3, 2, 5, 7, 3, 2 };
vector<int> lbvec(myvec);
sort(myvec.begin(), myvec.end(), cmp); // 旧式做法
cout << "predicate function:" << endl;
for (int it : myvec)
cout << it << ' ';
cout << endl;
sort(lbvec.begin(), lbvec.end(), [](int a, int b) -> bool { return a < b; }); // Lambda表达式
cout << "lambda expression:" << endl;
for (int it : lbvec)
cout << it << ' ';
}
在C++11之前,我们使用STL的sort函数,需要提供一个谓词函数。如果使用C++11的Lambda表达式,我们只需要传入一个匿名函数即可,方便简洁,而且代码的可读性也比旧式的做法好多了。
下面,我们就重点介绍一下Lambda表达式各项的具体用法。
捕获外部变量
Lambda表达式可以使用其可见范围内的外部变量,但必须明确声明(明确声明哪些外部变量可以被该Lambda表达式使用)。那么,在哪里指定这些外部变量呢?Lambda表达式通过在最前面的方括号[]来明确指明其内部可以访问的外部变量,这一过程也称过Lambda表达式“捕获”了外部变量。
我们通过一个例子来直观地说明一下:
#include <iostream>
using namespace std;
int main()
{
int a = 123;
auto f = [a] { cout << a << endl; };
f(); // 输出:123
//或通过“函数体”后面的‘()’传入参数
auto x = [](int a){cout << a << endl;}(123);
}
上面这个例子先声明了一个整型变量a,然后再创建Lambda表达式,该表达式“捕获”了a变量,这样在Lambda表达式函数体中就可以获得该变量的值。
类似参数传递方式(值传递、引入传递、指针传递),在Lambda表达式中,外部变量的捕获方式也有值捕获、引用捕获、隐式捕获。
1、值捕获
值捕获和参数传递中的值传递类似,被捕获的变量的值在Lambda表达式创建时通过值拷贝的方式传入,因此随后对该变量的修改不会影响影响Lambda表达式中的值。
示例如下:
int main()
{
int a = 123;
auto f = [a] { cout << a << endl; };
a = 321;
f(); // 输出:123
}
这里需要注意的是,如果以传值方式捕获外部变量,则在Lambda表达式函数体中不能修改该外部变量的值。
2、引用捕获
使用引用捕获一个外部变量,只需要在捕获列表变量前面加上一个引用说明符&。如下:
int main()
{
int a = 123;
auto f = [&a] { cout << a << endl; };
a = 321;
f(); // 输出:321
}
从示例中可以看出,引用捕获的变量使用的实际上就是该引用所绑定的对象。
3、隐式捕获
上面的值捕获和引用捕获都需要我们在捕获列表中显示列出Lambda表达式中使用的外部变量。除此之外,我们还可以让编译器根据函数体中的代码来推断需要捕获哪些变量,这种方式称之为隐式捕获。隐式捕获有两种方式,分别是[=]和[&]。[=]表示以值捕获的方式捕获外部变量,[&]表示以引用捕获的方式捕获外部变量。
隐式值捕获示例:
int main()
{
int a = 123;
auto f = [=] { cout << a << endl; }; // 值捕获
f(); // 输出:123
}
隐式引用捕获示例:
int main()
{
int a = 123;
auto f = [&] { cout << a << endl; }; // 引用捕获
a = 321;
f(); // 输出:321
}
4、混合方式
上面的例子,要么是值捕获,要么是引用捕获,Lambda表达式还支持混合的方式捕获外部变量,这种方式主要是以上几种捕获方式的组合使用。
到这里,我们来总结一下:C++11中的Lambda表达式捕获外部变量主要有以下形式:
捕获形式 | 说明 |
---|---|
[] | 不捕获任何外部变量 |
[变量名, …] | 默认以值得形式捕获指定的多个外部变量(用逗号分隔),如果引用捕获,需要显示声明(使用&说明符) |
[this] | 以值的形式捕获this指针 |
[=] | 以值的形式捕获所有外部变量 |
[&] | 以引用形式捕获所有外部变量 |
[=, &x] | 变量x以引用形式捕获,其余变量以传值形式捕获 |
[&, x] | 变量x以值的形式捕获,其余变量以引用形式捕获 |
修改捕获变量
前面我们提到过,在Lambda表达式中,如果以传值方式捕获外部变量,则函数体中不能修改该外部变量,否则会引发编译错误。那么有没有办法可以修改值捕获的外部变量呢?这是就需要使用mutable关键字,该关键字用以说明表达式体内的代码可以修改值捕获的变量,示例:
int main()
{
int a = 123;
auto f = [a]()mutable { cout << ++a; }; // 不会报错
cout << a << endl; // 输出:123
f(); // 输出:124
}
Lambda表达式的参数
Lambda表达式的参数和普通函数的参数类似,那么这里为什么还要拿出来说一下呢?原因是在Lambda表达式中传递参数还有一些限制,主要有以下几点:
- 参数列表中不能有默认参数
- 不支持可变参数
- 所有参数必须有参数名
常用举例:
{
int m = [](int x) { return [](int y) { return y * 2; }(x)+6; }(5); std::cout << "m:" << m << std::endl; //输出m:16 std::cout << "n:" << [](int x, int y) { return x + y; }(5, 4) << std::endl; //输出n:9 auto gFunc = [](int x) -> function<int(int)> { return [=](int y) { return x + y; }; }; auto lFunc = gFunc(4); std::cout << lFunc(5) << std::endl; auto hFunc = [](const function<int(int)>& f, int z) { return f(z) + 1; }; auto a = hFunc(gFunc(7), 8); int a = 111, b = 222; auto func = [=, &b]()mutable { a = 22; b = 333; std::cout << "a:" << a << " b:" << b << std::endl; }; func(); std::cout << "a:" << a << " b:" << b << std::endl; a = 333; auto func2 = [=, &a] { a = 444; std::cout << "a:" << a << " b:" << b << std::endl; }; func2(); auto func3 = [](int x) ->function<int(int)> { return [=](int y) { return x + y; }; };
std::function<void(int x)> f_display_42 = [](int x) { print_num(x); }; f_display_42(44);
}