zoukankan      html  css  js  c++  java
  • Magic Stones CodeForces

    E. Magic Stones
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Grigory has nn magic stones, conveniently numbered from 11 to nn. The charge of the ii-th stone is equal to cici.

    Sometimes Grigory gets bored and selects some inner stone (that is, some stone with index ii, where 2in12≤i≤n−1), and after that synchronizes it with neighboring stones. After that, the chosen stone loses its own charge, but acquires the charges from neighboring stones. In other words, its charge cici changes to ci=ci+1+ci1cici′=ci+1+ci−1−ci.

    Andrew, Grigory's friend, also has nn stones with charges titi. Grigory is curious, whether there exists a sequence of zero or more synchronization operations, which transforms charges of Grigory's stones into charges of corresponding Andrew's stones, that is, changes cici into titi for all ii?

    Input

    The first line contains one integer nn (2n1052≤n≤105) — the number of magic stones.

    The second line contains integers c1,c2,,cnc1,c2,…,cn (0ci21090≤ci≤2⋅109) — the charges of Grigory's stones.

    The second line contains integers t1,t2,,tnt1,t2,…,tn (0ti21090≤ti≤2⋅109) — the charges of Andrew's stones.

    Output

    If there exists a (possibly empty) sequence of synchronization operations, which changes all charges to the required ones, print "Yes".

    Otherwise, print "No".

    Examples
    input
    Copy
    4
    7 2 4 12
    7 15 10 12
    
    output
    Copy
    Yes
    
    input
    Copy
    3
    4 4 4
    1 2 3
    
    output
    Copy
    No
    
    Note

    In the first example, we can perform the following synchronizations (11-indexed):

    • First, synchronize the third stone [7,2,4,12][7,2,10,12][7,2,4,12]→[7,2,10,12].
    • Then synchronize the second stone: [7,2,10,12][7,15,10,12][7,2,10,12]→[7,15,10,12].

    In the second example, any operation with the second stone will not change its charge

    思路:

    通过样例观察:

     

    In the first example, we can perform the following synchronizations (11-indexed):

      • First, synchronize the third stone [7,2,4,12][7,2,10,12][7,2,4,12]→[7,2,10,12].
      • Then synchronize the second stone: [7,2,10,12][7,15,10,12][7,2,10,12]→[7,15,10,12

    我们来看最初的数组,和中途的数组,以及目标数组,他们的差分都是【5,8,2】这三个数,变来变去都是这三个,

    再加以观察可以发现,我们每执行一个操作,影响的只是交换了差分,那么只需要数组的首尾两个数相等,并且中间的差分数排序后相等即可保证一一定能交换成功。

    细节见代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <queue>
    #include <stack>
    #include <map>
    #include <set>
    #include <vector>
    #define rt return
    #define sz(a) int(a.size())
    #define all(a) a.begin(), a.end()
    #define rep(i,x,n) for(int i=x;i<n;i++)
    #define repd(i,x,n) for(int i=x;i<=n;i++)
    #define pii pair<int,int>
    #define pll pair<long long ,long long>
    #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
    #define MS0(X) memset((X), 0, sizeof((X)))
    #define MSC0(X) memset((X), '', sizeof((X)))
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define eps 1e-6
    #define gg(x) getInt(&x)
    #define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
    using namespace std;
    typedef long long ll;
    ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
    ll powmod(ll a,ll b,ll MOD){ll ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;}
    inline void getInt(int* p);
    const int maxn=1000010;
    const int inf=0x3f3f3f3f;
    /*** TEMPLATE CODE * * STARTS HERE ***/
    int n;
    int a[maxn];
    int b[maxn];
    int main()
    {
        gbtb;
        cin>>n;
        repd(i,1,n)
        {
            cin>>a[i];
        }
        repd(i,1,n)
        {
            cin>>b[i];
        }
        
        
        std::vector<int> v1;
        std::vector<int> v2;
        bool isok=1;
        if(a[1]!=b[1]||a[n]!=b[n])
        {
            // db(2);
            isok=0;
        }
        
        repd(i,2,n)
        {
            v1.pb(a[i]-a[i-1]);
            v2.pb(b[i]-b[i-1]);
        }
        int z=sz(v1);
        sort(v1.begin(),v1.end());
        sort(v2.begin(),v2.end());
        repd(i,0,z-1)
        {
            if(v1[i]!=v2[i])
            {
                isok=0;
            }
        }
        if(isok)
        {
            printf("Yes
    ");
        }else
        {
            printf("No
    ");
        }
        return 0;
    }
    
    inline void getInt(int* p) {
        char ch;
        do {
            ch = getchar();
        } while (ch == ' ' || ch == '
    ');
        if (ch == '-') {
            *p = -(getchar() - '0');
            while ((ch = getchar()) >= '0' && ch <= '9') {
                *p = *p * 10 - ch + '0';
            }
        }
        else {
            *p = ch - '0';
            while ((ch = getchar()) >= '0' && ch <= '9') {
                *p = *p * 10 + ch - '0';
            }
        }
    }
    本博客为本人原创,如需转载,请必须声明博客的源地址。 本人博客地址为:www.cnblogs.com/qieqiemin/ 希望所写的文章对您有帮助。
  • 相关阅读:
    matlab 函数库
    阿甘的珠宝 大数据博弈综合应用 SG函数 + 最后取为输或赢
    hdu 1536 博弈 SG函数(dfs)
    hdu 1907 John / 2509 Be the Winner 博弈 最后取完者为输
    深入理解 Nim 博弈
    SG函数模板 hdu 1848/1847/1849/1850/1851
    初始博弈 hdu 1846 Brave Game
    乘数密码 扩展欧几里得求逆元
    68.最大k乘积问题 (15分)
    第一次作业
  • 原文地址:https://www.cnblogs.com/qieqiemin/p/10356180.html
Copyright © 2011-2022 走看看