zoukankan      html  css  js  c++  java
  • 2019 ICPC 南昌网络赛I:Yukino With Subinterval(CDQ分治)

    Yukino With Subinterval

    Yukino has an array a_1, a_2 cdots a_na1,a2⋯a**n. As a tsundere girl, Yukino is fond of studying subinterval.

    Today, she gives you four integers l, r, x, yl,r,x,y, and she is looking for how many different subintervals [L, R][L,R] are in the interval [l, r][l,r] that meet the following restraints:

    1. a_L =a_{L+1} =cdots=a_Ra**L=a**L+1=⋯=a**R, and for any i in [L,R], x le a_i le yi∈[L,R],xa**iy.
    2. The length of such a subinterval should be maximum under the first restraint.

    Note that two subintervals [L_1,R_1] , [L_2,R_2][L1,R1],[L2,R2]are different if and only if at least one of the following formulas is true:

    1. L1 cancel= L2L1=L2
    2. R1 cancel= R2R1=R2

    Yukino, at the same time, likes making tricks. She will choose two integers pos,vpos,v, and she will change a_{pos}apo**s to vv.

    Now, you need to handle the following types of queries:

    • 11 pos vpos v: change a_{pos}apo**s to vv
    • 22 l r x yl r x y: print the number of legal subintervals in the interval [l, r][l,r]

    Input

    The first line of the input contains two integers n, m (1 le n, m le 2 imes 10^5)n,m(1≤n,m≤2×105) – the numbers of the array and the numbers of queries respectively.

    The second line of the input contains nn integers a_i (1 le a_i le n)a**i(1≤a**in).

    For the next mm line, each containing a query in one of the following queries:

    • 11 pospos vv (1 le pos, v le n)(1≤pos,vn): change a_{pos}apo**s to vv
    • 22 l r x yl r x y (1 le l le r le n) (1 le x le y le n)(1≤lrn)(1≤xyn): print the number of legal subintervals in the interval [l,r][l,r]

    Output

    For each query of the second type, you should output the number of legal subintervals in the interval [l, r][l,r].

    样例输入复制

    6 3 
    3 3 1 5 6 5 
    2 2 3 4 5 
    1 3 2 
    2 1 6 1 5
    

    样例输出复制

    0
    4
    

    样例解释

    For the first operations, there are 33 different subintervals ([2, 2],[3, 3],[2,3])([2,2],[3,3],[2,3]) in the interval [2, 3][2,3], but none of them meets all the restraints.

    For the third operations, the legal subintervals in interval [1, 6][1,6] are: [1, 2], [3, 3], [4, 4], [6, 6][1,2],[3,3],[4,4],[6,6]

    Notes that although subintervals [1,1][1,1] and [2,2][2,2] also meet the first restraint, we can extend them to subinterval [1, 2][1,2]. So the length of them is not long enough, which against the second one.

    题目链接:https://nanti.jisuanke.com/t/41356

    题意:

    给你一个含有n个数的数组,和m个操作

    操作1:

    将a[pos] 变为val

    操作2:

    询问在([l,r]) 中有多少个子区间满足数值在$[x,y] $ 之间 ,每一个子区间是长度尽可能大的相同数字。

    思路:

    将数组中 $a[i] $ ,转为在二维坐标平面上的点((i,a[i])) ,

    那么就转为了一个带修改的二维平面中询问矩阵内点权值和的问题。

    这是一个经典的三维偏序问题。

    可以用CDQ分治来解决。

    不会的话可以先学习一下这题:

    https://www.cnblogs.com/qieqiemin/p/11613573.html

    本题还需要注意几点:

    因为连续相同的数值只贡献一个,所以我们把连续相同的只把第一个点放入平面中(即放入cdq的离线操作中)

    那么对于每一个询问,我们就要特判一下((l,a[l])) 这个点,如果(a[l])([x,y]) 之间,并且 满足

    $l >1 $

    $a[l]==a[l-1] $

    这2个条件,都需要对这个询问的答案加上1。即加上a[l]为开头的子区间的贡献,

    以及修改操作,需要判断改变(a[i])(a[i-1],a[i+1]) 的影响,以及如果更改前的(a[i]) 是一个子区间的开头,需要去掉原来的影响(加上相反的值即可。)

    代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <queue>
    #include <stack>
    #include <map>
    #include <set>
    #include <vector>
    #include <iomanip>
    #define ALL(x) (x).begin(), (x).end()
    #define sz(a) int(a.size())
    #define rep(i,x,n) for(int i=x;i<n;i++)
    #define repd(i,x,n) for(int i=x;i<=n;i++)
    #define pii pair<int,int>
    #define pll pair<long long ,long long>
    #define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
    #define MS0(X) memset((X), 0, sizeof((X)))
    #define MSC0(X) memset((X), '', sizeof((X)))
    #define pb push_back
    #define mp make_pair
    #define fi first
    #define se second
    #define eps 1e-6
    #define gg(x) getInt(&x)
    #define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
    #define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
    #define du2(a,b) scanf("%d %d",&(a),&(b))
    #define du1(a) scanf("%d",&(a));
    using namespace std;
    typedef long long ll;
    ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
    ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
    ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
    void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("
    ");}}}
    void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("
    ");}}}
    
    inline void getInt(int *p);
    const int maxn = 1000010;
    const int inf = 0x3f3f3f3f;
    /*** TEMPLATE CODE * * STARTS HERE ***/
    
    ll tree[maxn];
    int lowbit(int x)
    {
        return -x & x;
    }
    ll ask(int x)
    {
    //    cout<<x<<" ";
        ll res = 0ll;
        while (x) {
            res += tree[x];
            x -= lowbit(x);
        }
    //    cout<<res<<endl;
        return res;
    }
    void add(int x, ll val)
    {
    //    cout<<x<<" "<<val<<endl;
        while (x < maxn) {
            tree[x] += val;
            x += lowbit(x);
        }
    }
    int n, m;
    struct node {
        int time;
        int op;
        int x, y;
        int val;
        int ansid;
        node() {}
        node(int tt, int oo, int xx, int yy, int vv, int aa)
        {
            time = tt;
            op = oo;
            x = xx;
            y = yy;
            val = vv;
            ansid = aa;
        }
        bool operator < (const node &bb) const
        {
            if (time != bb.time) {
                return time < bb.time;
            } else if (x != bb.x) {
                return x < bb.x;
            } else if (y != bb.y) {
                return y < bb.y;
            } else {
                return op < bb.op;
            }
        }
        bool operator<= (const node &bb )const
        {
            if (x != bb.x) {
                return x < bb.x;
            } else if (y != bb.y) {
                return y < bb.y;
            } else {
                return op < bb.op;
            }
        }
    } a[maxn], b[maxn];
    int ans[maxn];
    int tot;
    int anstot;
    int c[maxn];
    int sym[maxn];
    void cdq(int l, int r)
    {
        if (l == r) {
            return ;
        }
        int mid = (l + r) >> 1;
        cdq(l, mid);
        cdq(mid + 1, r);
        int ql = l;
        int qr = mid + 1;
        repd(i, l, r) {
            if (qr > r || (ql <= mid && a[ql] <= a[qr])) {
                if (a[ql].op == 1) {
                    add(a[ql].y, a[ql].val);
                    sym[i] = 1;
                }
                b[i] = a[ql++];
            } else {
                if (a[qr].op == 2) {
                    ans[a[qr].ansid] += a[qr].val * ask(a[qr].y);
                }
                b[i] = a[qr++];
            }
        }
        ql = l;
        qr = mid + 1;
        repd(i, l, r) {if (qr > r || (ql <= mid && a[ql] <= a[qr])) {if (a[ql].op == 1) {add(a[ql].y, -a[ql].val);} ql++;} else {qr++;}}
        repd(i, l, r) {a[i] = b[i];}
    }
    
    int main()
    {
        //freopen("D:\code\text\input.txt","r",stdin);
        //freopen("D:\code\text\output.txt","w",stdout);
        du2(n, m);
        repd(i, 1, n) {
            du1(c[i]);
            if (c[i] != c[i - 1]) {
                a[++tot] = node(-1, 1, i, c[i], 1, 0);
            }
        }
        // node(int tt, int oo, int xx, int yy, int vv, int aa)
        repd(i, 1, m) {
            int op;
            du1(op);
            if (op == 1) {
                int pos, v;
                du2(pos, v);
                if (pos != n && c[pos] == c[pos + 1]) {
                    a[++tot] = node(i, 1, pos + 1, c[pos + 1], 1, 0);
                }
                if (pos == 1 || c[pos] != c[pos - 1]) {
                    a[++tot] = node(i, 1, pos, c[pos], -1, 0);
                }
                c[pos] = v;
                if (pos != n && c[pos] == c[pos + 1]) {
                    a[++tot] = node(i, 1, pos + 1, c[pos + 1], -1, 0);
                }
                if (pos == 1 || c[pos] != c[pos - 1]) {
                    a[++tot] = node(i, 1, pos, c[pos], 1, 0);
                }
            } else {
                int l, r, x, y;
                du2(l, r);
                du2(x, y);
                if (l != 1 && c[l] == c[l - 1] && c[l] <= y && c[l] >= x) {
                    ans[anstot]++;
                }
                a[++tot] = node(i, 2, r, y, 1, anstot);
                a[++tot] = node(i, 2, l - 1, x - 1, 1, anstot);
                a[++tot] = node(i, 2, r, x - 1, -1, anstot);
                a[++tot] = node(i, 2, l - 1, y, -1, anstot++);
            }
        }
        sort(a + 1, a + 1 + tot);
        cdq(1, tot);
        repd(i, 0, anstot - 1) {
            printf("%d
    ", max(ans[i], 0));
        }
        return 0;
    }
    
    inline void getInt(int *p)
    {
        char ch;
        do {
            ch = getchar();
        } while (ch == ' ' || ch == '
    ');
        if (ch == '-') {
            *p = -(getchar() - '0');
            while ((ch = getchar()) >= '0' && ch <= '9') {
                *p = *p * 10 - ch + '0';
            }
        } else {
            *p = ch - '0';
            while ((ch = getchar()) >= '0' && ch <= '9') {
                *p = *p * 10 + ch - '0';
            }
        }
    }
    
    
    
    
    
    本博客为本人原创,如需转载,请必须声明博客的源地址。 本人博客地址为:www.cnblogs.com/qieqiemin/ 希望所写的文章对您有帮助。
  • 相关阅读:
    远程服务器git搭建
    Ubuntu安装配置MySQL数据库,Apache,PHP
    html radio check
    opencv 抠图联通块(c接口)
    Vim命令
    二维码
    zTree Jquery eCharts
    Java进阶篇设计模式之二 ----- 工厂模式
    SpringBoot整合Netty并使用Protobuf进行数据传输(附工程)
    SpringBoot整合Jsp和Thymeleaf (附工程)
  • 原文地址:https://www.cnblogs.com/qieqiemin/p/11620597.html
Copyright © 2011-2022 走看看