zoukankan      html  css  js  c++  java
  • 2018 CCPC- Guilin Site-L. Two Ants (几何)

    2018 CCPC- Guilin Site-L. Two Ants (几何)

    题面:

    题意:

    给定两个线段,颜色分别为白色和黑色,现在问你在二维平面坐标系中只能看到白色线段的区域面积是多少?

    思路:

    主要是分类讨论,情况较多,一定要按照优先顺序详细讨论即可。

    下面我将给出情形,并且顺序是优先级由高到低。

    • 白色线段退化成点,答案为0

    • 黑色线段退化成点,答案为inf

    • 两线段规范相交,答案为0

    • 两线段非规范相交:

      • 若有共线答案为0。
      • 否则即交点在端点,答案为inf
    • 两线段不相交:

      • 黑色线段的两点在白色线段的两侧,答案为0.

      • 否则:

        • 两个线段端点彼此之间的连线,若有交点,判断其相对位置,如果相对于白色线段不与黑色线段同侧,则计算该点与白色线段构成的面积即是答案。

        • 若没有交点(平行),或者交点都在黑色线段同侧,则答案为inf.

          如下图:

    代码:

    #include<bits/stdc++.h>
    using namespace std;
    
    // `计算几何模板`
    const double eps = 1e-14;
    const double inf = 1e20;
    const double pi = acos(-1.0);
    const int maxp = 1010;
    //`Compares a double to zero`
    int sgn(double x)
    {
        if (fabs(x) < eps) { return 0; }
        else { return x < 0 ? -1 : 1; }
    }
    //square of a double
    inline double sqr(double x) {return x * x;}
    struct Point {
        double x, y;
        Point() {}
        Point(double _x, double _y)
        {
            x = _x;
            y = _y;
        }
        void input()
        {
            scanf("%lf%lf", &x, &y);
        }
        void output()
        {
            printf("%.2f %.2f
    ", x, y);
        }
        bool operator == (Point b)const
        {
            return sgn(x - b.x) == 0 && sgn(y - b.y) == 0;
        }
        bool operator < (Point b)const
        {
            return sgn(x - b.x) == 0 ? sgn(y - b.y) < 0 : x < b.x;
        }
        Point operator -(const Point &b)const
        {
            return Point(x - b.x, y - b.y);
        }
        //叉积
        double operator ^(const Point &b)const
        {
            return x * b.y - y * b.x;
        }
        //点积
        double operator *(const Point &b)const
        {
            return x * b.x + y * b.y;
        }
        //返回长度
        double len()
        {
            return hypot(x, y); //库函数
        }
        //返回长度的平方
        double len2()
        {
            return x * x + y * y;
        }
        //返回两点的距离
        double distance(Point p)
        {
            return hypot(x - p.x, y - p.y);
        }
        Point operator +(const Point &b)const
        {
            return Point(x + b.x, y + b.y);
        }
        Point operator *(const double &k)const
        {
            return Point(x * k, y * k);
        }
        Point operator /(const double &k)const
        {
            return Point(x / k, y / k);
        }
        //`计算pa  和  pb 的夹角`
        //`就是求这个点看a,b 所成的夹角`
        //`测试 LightOJ1203`
        double rad(Point a, Point b)
        {
            Point p = *this;
            return fabs(atan2( fabs((a - p) ^ (b - p)), (a - p) * (b - p) ));
        }
        //`化为长度为r的向量`
        Point trunc(double r)
        {
            double l = len();
            if (!sgn(l)) { return *this; }
            r /= l;
            return Point(x * r, y * r);
        }
        //`逆时针旋转90度`
        Point rotleft()
        {
            return Point(-y, x);
        }
        //`顺时针旋转90度`
        Point rotright()
        {
            return Point(y, -x);
        }
        //`绕着p点逆时针旋转angle`
        Point rotate(Point p, double angle)
        {
            Point v = (*this) - p;
            double c = cos(angle), s = sin(angle);
            return Point(p.x + v.x * c - v.y * s, p.y + v.x * s + v.y * c);
        }
    };
    struct Line {
        Point s, e;
        Line() {}
        Line(Point _s, Point _e)
        {
            s = _s;
            e = _e;
        }
        bool operator ==(Line v)
        {
            return (s == v.s) && (e == v.e);
        }
        //`根据一个点和倾斜角angle确定直线,0<=angle<pi`
        Line(Point p, double angle)
        {
            s = p;
            if (sgn(angle - pi / 2) == 0) {
                e = (s + Point(0, 1));
            } else {
                e = (s + Point(1, tan(angle)));
            }
        }
        //ax+by+c=0
        Line(double a, double b, double c)
        {
            if (sgn(a) == 0) {
                s = Point(0, -c / b);
                e = Point(1, -c / b);
            } else if (sgn(b) == 0) {
                s = Point(-c / a, 0);
                e = Point(-c / a, 1);
            } else {
                s = Point(0, -c / b);
                e = Point(1, (-c - a) / b);
            }
        }
        void input()
        {
            s.input();
            e.input();
        }
        void adjust()
        {
            if (e < s) { swap(s, e); }
        }
        //求线段长度
        double length()
        {
            return s.distance(e);
        }
        //`返回直线倾斜角 0<=angle<pi`
        double angle()
        {
            double k = atan2(e.y - s.y, e.x - s.x);
            if (sgn(k) < 0) { k += pi; }
            if (sgn(k - pi) == 0) { k -= pi; }
            return k;
        }
        //`点和直线关系`
        //`1  在左侧`
        //`2  在右侧`
        //`3  在直线上`
        int relation(Point p)
        {
            int c = sgn((p - s) ^ (e - s));
            if (c < 0) { return 1; }
            else if (c > 0) { return 2; }
            else { return 3; }
        }
        // 点在线段上的判断
        bool pointonseg(Point p)
        {
            return sgn((p - s) ^ (e - s)) == 0 && sgn((p - s) * (p - e)) <= 0;
        }
        //`两向量平行(对应直线平行或重合)`
        bool parallel(Line v)
        {
            return sgn((e - s) ^ (v.e-v.s)) == 0;
        }
        //`两线段相交判断`
        //`2 规范相交`
        //`1 非规范相交`
        //`0 不相交`
        int segcrossseg(Line v)
        {
            int d1 = sgn((e - s) ^ (v.s - s));
            int d2 = sgn((e - s) ^ (v.e-s));
            int d3 = sgn((v.e-v.s) ^ (s - v.s));
            int d4 = sgn((v.e-v.s) ^ (e - v.s));
            if ( (d1 ^ d2) == -2 && (d3 ^ d4) == -2 ) { return 2; }
            return (d1 == 0 && sgn((v.s - s) * (v.s - e)) <= 0) ||
                   (d2 == 0 && sgn((v.e-s) * (v.e-e)) <= 0) ||
                   (d3 == 0 && sgn((s - v.s) * (s - v.e)) <= 0) ||
                   (d4 == 0 && sgn((e - v.s) * (e - v.e)) <= 0);
        }
        //`直线和线段相交判断`
        //`-*this line   -v seg`
        //`2 规范相交`
        //`1 非规范相交`
        //`0 不相交`
        int linecrossseg(Line v)
        {
            int d1 = sgn((e - s) ^ (v.s - s));
            int d2 = sgn((e - s) ^ (v.e-s));
            if ((d1 ^ d2) == -2) { return 2; }
            return (d1 == 0 || d2 == 0);
        }
        //`两直线关系`
        //`0 平行`
        //`1 重合`
        //`2 相交`
        int linecrossline(Line v)
        {
            if ((*this).parallel(v)) {
                return v.relation(s) == 3;
            }
            return 2;
        }
        //`求两直线的交点`
        //`要保证两直线不平行或重合`
        Point crosspoint(Line v)
        {
            double a1 = (v.e-v.s) ^ (s - v.s);
            double a2 = (v.e-v.s) ^ (e - v.s);
            return Point((s.x * a2 - e.x * a1) / (a2 - a1), (s.y * a2 - e.y * a1) / (a2 - a1));
        }
        //点到直线的距离
        double dispointtoline(Point p)
        {
            return fabs((p - s) ^ (e - s)) / length();
        }
        //点到线段的距离
        double dispointtoseg(Point p)
        {
            if (sgn((p - s) * (e - s)) < 0 || sgn((p - e) * (s - e)) < 0) {
                return min(p.distance(s), p.distance(e));
            }
            return dispointtoline(p);
        }
        //`返回线段到线段的距离`
        //`前提是两线段不相交,相交距离就是0了`
        double dissegtoseg(Line v)
        {
            return min(min(dispointtoseg(v.s), dispointtoseg(v.e)), min(v.dispointtoseg(s), v.dispointtoseg(e)));
        }
        //`返回点p在直线上的投影`
        Point lineprog(Point p)
        {
            Point v = e - s;
            return s + ( (v * (v * (p - s))) / (v.len2()) );
        }
        //`返回点p关于直线的对称点`
        Point symmetrypoint(Point p)
        {
            Point q = lineprog(p);
            return Point(2 * q.x - p.x, 2 * q.y - p.y);
        }
    };
    
    int main()
    {
        int T;
        cin >> T;
        Line w, b;
        int cas = 0;
        Line l1, l2, l3, l4;
        Point cp;
        int sg;
        double ans;
        while (T--) {
            ++cas;
            w.input();
            b.input();
            if (w.s == w.e) {
                printf("Case %d: 0.000
    ", cas);
            } else if (b.s == b.e) {
                printf("Case %d: inf
    ", cas);
            } else {
                int crs = w.segcrossseg(b);
                if (crs == 2) {
                    printf("Case %d: 0.000
    ", cas);
                } else if (crs == 1) {
                    if (w.relation(b.s) == 3 && w.relation(b.e) == 3) {
                        printf("Case %d: 0.000
    ", cas);
                    } else if (w.pointonseg(b.s) || w.pointonseg(b.e)) {
                        printf("Case %d: inf
    ", cas);
                    } else {
                        printf("Case %d: 0.000
    ", cas);
                    }
                } else {
                    if (sgn((w.e - w.s) ^ (b.e - w.s)) * sgn((w.e - w.s) ^ (b.s - w.s)) <= 0) {
                        printf("Case %d: 0.000
    ", cas);
                    } else {
                        sg = sgn((w.e - w.s) ^ (b.e - w.s));
                        bool flag = false;
                        l1 = Line(w.e, b.e);
                        l2 = Line(w.s, b.s);
                        l3 = Line(w.e, b.s);
                        l4 = Line(w.s, b.e);
                        if (!l1.parallel(l2)) {
                            cp = l1.crosspoint(l2);
                            if (sgn((w.e - w.s) ^ (cp - w.s)) != sg) {
                                flag = true;
                                ans = abs((w.e - w.s) ^ (cp - w.s)) / 2;
                            }
                        }
                        if (!l3.parallel(l4)) {
                            cp = l3.crosspoint(l4);
                            if (sgn((w.e - w.s) ^ (cp - w.s)) != sg) {
                                flag = true;
                                ans = abs((w.e - w.s) ^ (cp - w.s)) / 2;
                            }
                        }
                        if (!flag) {
                            printf("Case %d: inf
    ", cas);
                        } else {
                            printf("Case %d: %.10f
    ", cas, ans);
                        }
                    }
                }
            }
        }
    }
    
  • 相关阅读:
    GNU C与ANSI C的不同
    在 Windows 上使用 Cygwin
    VS2010程序调试
    VS2010中visual assist x的一些问题
    专访TK教主于旸:原来那些搞安全的说的都是真的(图灵访谈)
    程序员必看的书
    msp430学习笔记-时钟及延时函数
    指针函数与函数指针
    msp430学习笔记-IO及低功耗
    运算符优先级常识
  • 原文地址:https://www.cnblogs.com/qieqiemin/p/13996423.html
Copyright © 2011-2022 走看看