zoukankan      html  css  js  c++  java
  • 雪花算法的使用和对算法的理解

    分布式id生成算法的有很多种,Twitter的SnowFlake就是其中经典的一种。

    算法原理

    SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图:


     
    结构图
    1. 1bit,不用,因为二进制中最高位是符号位,1表示负数,0表示正数。生成的id一般都是用整数,所以最高位固定为0。

    2. 41bit-时间戳,用来记录时间戳,毫秒级。
      - 41位可以表示2^{41}-1个数字,
      - 如果只用来表示正整数(计算机中正数包含0),可以表示的数值范围是:0 至 2^{41}-1,减1是因为可表示的数值范围是从0开始算的,而不是1。
      - 也就是说41位可以表示2^{41}-1个毫秒的值,转化成单位年则是(2^{41}-1) / (1000 * 60 * 60 * 24 *365) = 69

    3. 10bit-工作机器id,用来记录工作机器id。
      - 可以部署在2^{10} = 1024个节点,包括5位datacenterId和5位workerId
      - 5位(bit)可以表示的最大正整数是2^{5}-1 = 31,即可以用0、1、2、3、....31这32个数字,来表示不同的datecenterId或workerId

    4. 12bit-序列号,序列号,用来记录同毫秒内产生的不同id。
      - 12位(bit)可以表示的最大正整数是2^{12}-1 = 4095,即可以用0、1、2、3、....4094这4095个数字,来表示同一机器同一时间截(毫秒)内产生的4095个ID序号。

    由于在Java中64bit的整数是long类型,所以在Java中SnowFlake算法生成的id就是long来存储的。

    SnowFlake可以保证:


    1. 所有生成的id按时间趋势递增
    2. 整个分布式系统内不会产生重复id(因为有datacenterId和workerId来做区分)

    算法实现(Java)

    Twitter官方给出的算法实现 是用Scala写的,这里不做分析,可自行查看。

    Java版算法实现:搬运自煲煲菜的博客

    package com.qingmu.mybaitsplus.util;
    
    public class IdWorker {
    
        //下面两个每个5位,加起来就是10位的工作机器id
        private static long workerId;    //工作id
        private static long datacenterId;   //数据id
        //12位的序列号
        private static long sequence;
    
        public IdWorker(long workerId, long datacenterId, long sequence) {
            // sanity check for workerId
            if (workerId > maxWorkerId || workerId < 0) {
                throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
            }
            if (datacenterId > maxDatacenterId || datacenterId < 0) {
                throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
            }
            System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
                    timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);
    
            this.workerId = workerId;
            this.datacenterId = datacenterId;
            this.sequence = sequence;
        }
    
        //初始时间戳
        private static long twepoch = 1288834974657L;
    
        //长度为5位
        private static long workerIdBits = 5L;
        private static long datacenterIdBits = 5L;
        //最大值
        private long maxWorkerId = -1L ^ (-1L << workerIdBits);
        private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
        //序列号id长度
        private static long sequenceBits = 12L;
        //序列号最大值
        private static long sequenceMask = -1L ^ (-1L << sequenceBits);
    
        //工作id需要左移的位数,12位
        private static long workerIdShift = sequenceBits;
        //数据id需要左移位数 12+5=17位
        private static long datacenterIdShift = sequenceBits + workerIdBits;
        //时间戳需要左移位数 12+5+5=22位
        private static long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    
        //上次时间戳,初始值为负数
        private static long lastTimestamp = -1L;
    
        public long getWorkerId() {
            return workerId;
        }
    
        public long getDatacenterId() {
            return datacenterId;
        }
    
        public long getTimestamp() {
            return System.currentTimeMillis();
        }
    
        //下一个ID生成算法
        public static synchronized long nextId() {
            long timestamp = timeGen();
    
            //获取当前时间戳如果小于上次时间戳,则表示时间戳获取出现异常
            if (timestamp < lastTimestamp) {
                System.err.printf("clock is moving backwards.  Rejecting requests until %d.", lastTimestamp);
                throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds",
                        lastTimestamp - timestamp));
            }
    
            //获取当前时间戳如果等于上次时间戳(同一毫秒内),则在序列号加一;否则序列号赋值为0,从0开始。
            if (lastTimestamp == timestamp) {
                sequence = (sequence + 1) & sequenceMask;
                if (sequence == 0) {
                    timestamp = tilNextMillis(lastTimestamp);
                }
            } else {
                sequence = 0;
            }
    
            //将上次时间戳值刷新
            lastTimestamp = timestamp;
    
            /**
             * 返回结果:
             * (timestamp - twepoch) << timestampLeftShift) 表示将时间戳减去初始时间戳,再左移相应位数
             * (datacenterId << datacenterIdShift) 表示将数据id左移相应位数
             * (workerId << workerIdShift) 表示将工作id左移相应位数
             * | 是按位或运算符,例如:x | y,只有当x,y都为0的时候结果才为0,其它情况结果都为1。
             * 因为个部分只有相应位上的值有意义,其它位上都是0,所以将各部分的值进行 | 运算就能得到最终拼接好的id
             */
            return ((timestamp - twepoch) << timestampLeftShift) |
                    (datacenterId << datacenterIdShift) |
                    (workerId << workerIdShift) |
                    sequence;
        }
    
        //获取时间戳,并与上次时间戳比较
        private static long tilNextMillis(long lastTimestamp) {
            long timestamp = timeGen();
            while (timestamp <= lastTimestamp) {
                timestamp = timeGen();
            }
            return timestamp;
        }
    
        //获取系统时间戳
        private static long timeGen() {
            return System.currentTimeMillis();
        }
    
        //---------------测试---------------
        public static void main(String[] args) {
            IdWorker worker = new IdWorker(1, 1, 1);
            for (int i = 0; i < 30; i++) {
                System.out.println(worker.nextId());
            }
        }
    
    }

    Talk is cheap, show you the code

    以下是Twitter官方原版的,用Scala写的,(我也不懂Scala,当成Java看即可):

    /** Copyright 2010-2012 Twitter, Inc.*/
    package com.twitter.service.snowflake
    
    import com.twitter.ostrich.stats.Stats
    import com.twitter.service.snowflake.gen._
    import java.util.Random
    import com.twitter.logging.Logger
    
    /**
     * An object that generates IDs.
     * This is broken into a separate class in case
     * we ever want to support multiple worker threads
     * per process
     */
    class IdWorker(
        val workerId: Long, 
        val datacenterId: Long, 
        private val reporter: Reporter, 
        var sequence: Long = 0L) extends Snowflake.Iface {
        
      private[this] def genCounter(agent: String) = {
        Stats.incr("ids_generated")
        Stats.incr("ids_generated_%s".format(agent))
      }
      private[this] val exceptionCounter = Stats.getCounter("exceptions")
      private[this] val log = Logger.get
      private[this] val rand = new Random
    
      val twepoch = 1288834974657L
    
      private[this] val workerIdBits = 5L
      private[this] val datacenterIdBits = 5L
      private[this] val maxWorkerId = -1L ^ (-1L << workerIdBits)
      private[this] val maxDatacenterId = -1L ^ (-1L << datacenterIdBits)
      private[this] val sequenceBits = 12L
    
      private[this] val workerIdShift = sequenceBits
      private[this] val datacenterIdShift = sequenceBits + workerIdBits
      private[this] val timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits
      private[this] val sequenceMask = -1L ^ (-1L << sequenceBits)
    
      private[this] var lastTimestamp = -1L
    
      // sanity check for workerId
      if (workerId > maxWorkerId || workerId < 0) {
        exceptionCounter.incr(1)
        throw new IllegalArgumentException("worker Id can't be greater than %d or less than 0".format(maxWorkerId))
      }
    
      if (datacenterId > maxDatacenterId || datacenterId < 0) {
        exceptionCounter.incr(1)
        throw new IllegalArgumentException("datacenter Id can't be greater than %d or less than 0".format(maxDatacenterId))
      }
    
      log.info("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
        timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId)
    
      def get_id(useragent: String): Long = {
        if (!validUseragent(useragent)) {
          exceptionCounter.incr(1)
          throw new InvalidUserAgentError
        }
    
        val id = nextId()
        genCounter(useragent)
    
        reporter.report(new AuditLogEntry(id, useragent, rand.nextLong))
        id
      }
    
      def get_worker_id(): Long = workerId
      def get_datacenter_id(): Long = datacenterId
      def get_timestamp() = System.currentTimeMillis
    
      protected[snowflake] def nextId(): Long = synchronized {
        var timestamp = timeGen()
    
        if (timestamp < lastTimestamp) {
          exceptionCounter.incr(1)
          log.error("clock is moving backwards.  Rejecting requests until %d.", lastTimestamp);
          throw new InvalidSystemClock("Clock moved backwards.  Refusing to generate id for %d milliseconds".format(
            lastTimestamp - timestamp))
        }
    
        if (lastTimestamp == timestamp) {
          sequence = (sequence + 1) & sequenceMask
          if (sequence == 0) {
            timestamp = tilNextMillis(lastTimestamp)
          }
        } else {
          sequence = 0
        }
    
        lastTimestamp = timestamp
        ((timestamp - twepoch) << timestampLeftShift) |
          (datacenterId << datacenterIdShift) |
          (workerId << workerIdShift) | 
          sequence
      }
    
      protected def tilNextMillis(lastTimestamp: Long): Long = {
        var timestamp = timeGen()
        while (timestamp <= lastTimestamp) {
          timestamp = timeGen()
        }
        timestamp
      }
    
      protected def timeGen(): Long = System.currentTimeMillis()
    
      val AgentParser = """([a-zA-Z][a-zA-Z-0-9]*)""".r
    
      def validUseragent(useragent: String): Boolean = useragent match {
        case AgentParser(_) => true
        case _ => false
      }
    }

    Scala是一门可以编译成字节码的语言,简单理解是在Java语法基础上加上了很多语法糖,例如不用每条语句后写分号,可以使用动态类型等等。抱着试一试的心态,我把Scala版的代码“翻译”成Java版本的,对scala代码改动的地方如下:

    /** Copyright 2010-2012 Twitter, Inc.*/
    package com.twitter.service.snowflake
    
    import com.twitter.ostrich.stats.Stats 
    import com.twitter.service.snowflake.gen._
    import java.util.Random
    import com.twitter.logging.Logger
    
    /**
     * An object that generates IDs.
     * This is broken into a separate class in case
     * we ever want to support multiple worker threads
     * per process
     */
    class IdWorker(                                        // |
        val workerId: Long,                                // |
        val datacenterId: Long,                            // |<--这部分改成Java的构造函数形式
        private val reporter: Reporter,//日志相关,删       // |
        var sequence: Long = 0L)                           // |
           extends Snowflake.Iface { //接口找不到,删       // |     
        
      private[this] def genCounter(agent: String) = {                     // |
        Stats.incr("ids_generated")                                       // |
        Stats.incr("ids_generated_%s".format(agent))                      // |<--错误、日志处理相关,删
      }                                                                   // | 
      private[this] val exceptionCounter = Stats.getCounter("exceptions") // |
      private[this] val log = Logger.get                                  // |
      private[this] val rand = new Random                                 // | 
    
      val twepoch = 1288834974657L
    
      private[this] val workerIdBits = 5L
      private[this] val datacenterIdBits = 5L
      private[this] val maxWorkerId = -1L ^ (-1L << workerIdBits)
      private[this] val maxDatacenterId = -1L ^ (-1L << datacenterIdBits)
      private[this] val sequenceBits = 12L
    
      private[this] val workerIdShift = sequenceBits
      private[this] val datacenterIdShift = sequenceBits + workerIdBits
      private[this] val timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits
      private[this] val sequenceMask = -1L ^ (-1L << sequenceBits)
    
      private[this] var lastTimestamp = -1L
    
      //----------------------------------------------------------------------------------------------------------------------------//
      // sanity check for workerId                                                                                                  //
      if (workerId > maxWorkerId || workerId < 0) {                                                                                 //
        exceptionCounter.incr(1) //<--错误处理相关,删                                                                               //
        throw new IllegalArgumentException("worker Id can't be greater than %d or less than 0".format(maxWorkerId))                 //// |-->改成:throw new IllegalArgumentException                                                                              ////            (String.format("worker Id can't be greater than %d or less than 0",maxWorkerId))                              //
      }                                                                                                                             ////
      if (datacenterId > maxDatacenterId || datacenterId < 0) {                                                                     //
        exceptionCounter.incr(1) //<--错误处理相关,删                                                                               //
        throw new IllegalArgumentException("datacenter Id can't be greater than %d or less than 0".format(maxDatacenterId))         //// |-->改成:throw new IllegalArgumentException                                                                             ////             (String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId))                     //
      }                                                                                                                             //
                                                                                                                                    //
      log.info("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d", //  
        timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId)                                                 //   
      // |-->改成:System.out.printf("worker...%d...",timestampLeftShift,...);                                                      //
      //----------------------------------------------------------------------------------------------------------------------------//
    
      //-------------------------------------------------------------------//  
      //这个函数删除错误处理相关的代码后,剩下一行代码:val id = nextId()      //
      //所以我们直接调用nextId()函数可以了,所以在“翻译”时可以删除这个函数      //
      def get_id(useragent: String): Long = {                              // 
        if (!validUseragent(useragent)) {                                  //
          exceptionCounter.incr(1)                                         //
          throw new InvalidUserAgentError                                  //
        }                                                                  //// 
        val id = nextId()                                                  // 
        genCounter(useragent)                                              //
                                                                           //
        reporter.report(new AuditLogEntry(id, useragent, rand.nextLong))   //
        id                                                                 //
      }                                                                    // 
      //-------------------------------------------------------------------//
    
      def get_worker_id(): Long = workerId           // |
      def get_datacenter_id(): Long = datacenterId   // |<--改成Java函数
      def get_timestamp() = System.currentTimeMillis // |
    
      protected[snowflake] def nextId(): Long = synchronized { // 改成Java函数
        var timestamp = timeGen()
    
        if (timestamp < lastTimestamp) {
          exceptionCounter.incr(1) // 错误处理相关,删
          log.error("clock is moving backwards.  Rejecting requests until %d.", lastTimestamp); // 改成System.err.printf(...)
          throw new InvalidSystemClock("Clock moved backwards.  Refusing to generate id for %d milliseconds".format(
            lastTimestamp - timestamp)) // 改成RumTimeException
        }
    
        if (lastTimestamp == timestamp) {
          sequence = (sequence + 1) & sequenceMask
          if (sequence == 0) {
            timestamp = tilNextMillis(lastTimestamp)
          }
        } else {
          sequence = 0
        }
    
        lastTimestamp = timestamp
        ((timestamp - twepoch) << timestampLeftShift) | // |<--加上关键字return
          (datacenterId << datacenterIdShift) |         // |
          (workerId << workerIdShift) |                 // |
          sequence                                      // |
      }
    
      protected def tilNextMillis(lastTimestamp: Long): Long = { // 改成Java函数
        var timestamp = timeGen()
        while (timestamp <= lastTimestamp) {
          timestamp = timeGen()
        }
        timestamp // 加上关键字return
      }
    
      protected def timeGen(): Long = System.currentTimeMillis() // 改成Java函数
    
      val AgentParser = """([a-zA-Z][a-zA-Z-0-9]*)""".r                  // |
                                                                          // | 
      def validUseragent(useragent: String): Boolean = useragent match {  // |<--日志相关,删
        case AgentParser(_) => true                                       // |
        case _ => false                                                   // |   
      }                                                                   // | 
    }

    最上面的代码是改出来的java版代码:

    代码理解

    上面的代码中,有部分位运算的代码,如:

    sequence = (sequence + 1) & sequenceMask;
    
    private long maxWorkerId = -1L ^ (-1L << workerIdBits);
    
    return ((timestamp - twepoch) << timestampLeftShift) |
            (datacenterId << datacenterIdShift) |
            (workerId << workerIdShift) |
            sequence;

    为了能更好理解,我对相关知识研究了一下。

    负数的二进制表示

    在计算机中,负数的二进制是用补码来表示的。
    假设我是用Java中的int类型来存储数字的,
    int类型的大小是32个二进制位(bit),即4个字节(byte)。(1 byte = 8 bit)
    那么十进制数字3在二进制中的表示应该是这样的:

    00000000 00000000 00000000 00000011
    // 3的二进制表示,就是原码

    那数字-3在二进制中应该如何表示?
    我们可以反过来想想,因为-3+3=0,
    在二进制运算中把-3的二进制看成未知数x来求解
    求解算式的二进制表示如下:

      00000000 00000000 00000000 00000011 //3,原码
    +  xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx //-3,补码
    -----------------------------------------------
       00000000 00000000 00000000 00000000

    反推x的值,3的二进制加上什么值才使结果变成00000000 00000000 00000000 00000000?:

     00000000 00000000 00000000 00000011 //3,原码                         
    +  11111111 11111111 11111111 11111101 //-3,补码
    -----------------------------------------------
     1 00000000 00000000 00000000 00000000

    反推的思路是3的二进制数从最低位开始逐位加1,使溢出的1不断向高位溢出,直到溢出到第33位。然后由于int类型最多只能保存32个二进制位,所以最高位的1溢出了,剩下的32位就成了(十进制的)0。

    补码的意义就是可以拿补码和原码(3的二进制)相加,最终加出一个“溢出的0”

    以上是理解的过程,实际中记住公式就很容易算出来:

    • 补码 = 反码 + 1
    • 补码 = (原码 - 1)再取反码

    因此-1的二进制应该这样算:

    00000000 00000000 00000000 00000001 //原码:1的二进制
    11111111 11111111 11111111 11111110 //取反码:1的二进制的反码
    11111111 11111111 11111111 11111111 //加1:-1的二进制表示(补码)

    用位运算计算n个bit能表示的最大数值

    比如这样一行代码:

    private long workerIdBits = 5L;
        private long maxWorkerId = -1L ^ (-1L << workerIdBits);   

    上面代码换成这样看方便一点:
    long maxWorkerId = -1L ^ (-1L << 5L)

    咋一看真的看不准哪个部分先计算,于是查了一下Java运算符的优先级表:
    图片描述

    所以上面那行代码中,运行顺序是:

    • -1 左移 5,得结果a
    • -1 异或 a

    long maxWorkerId = -1L ^ (-1L << 5L)的二进制运算过程如下:

    -1 左移 5,得结果a :

            11111111 11111111 11111111 11111111 //-1的二进制表示(补码)
      11111 11111111 11111111 11111111 11100000 //高位溢出的不要,低位补0
            11111111 11111111 11111111 11100000 //结果a

    -1 异或 a :

      11111111 11111111 11111111 11111111 //-1的二进制表示(补码)
        ^   11111111 11111111 11111111 11100000 //两个操作数的位中,相同则为0,不同则为1
    ---------------------------------------------------------------------------
            00000000 00000000 00000000 00011111 //最终结果31

    最终结果是31,二进制00000000 00000000 00000000 00011111转十进制可以这么算:

    24+23+22+21+20=16+8+4+2+1=31

    那既然现在知道算出来long maxWorkerId = -1L ^ (-1L << 5L)中的maxWorkerId = 31,有什么含义?为什么要用左移5来算?如果你看过概述部分,请找到这段内容看看:

    5位(bit)可以表示的最大正整数是$2^{5}-1 = 31$,即可以用0、1、2、3、....31这32个数字,来表示不同的datecenterId或workerId

    -1L ^ (-1L << 5L)结果是31,$2^{5}-1$的结果也是31,所以在代码中,-1L ^ (-1L << 5L)的写法是利用位运算计算出5位能表示的最大正整数是多少

    用mask防止溢出

    有一段有趣的代码:

    sequence = (sequence + 1) & sequenceMask;
    分别用不同的值测试一下,你就知道它怎么有趣了:
    long seqMask = -1L ^ (-1L << 12L); //计算12位能耐存储的最大正整数,相当于:2^12-1 = 4095
            System.out.println("seqMask: "+seqMask);
            System.out.println(1L & seqMask);
            System.out.println(2L & seqMask);
            System.out.println(3L & seqMask);
            System.out.println(4L & seqMask);
            System.out.println(4095L & seqMask);
            System.out.println(4096L & seqMask);
            System.out.println(4097L & seqMask);
            System.out.println(4098L & seqMask);
    
            
            /**
            seqMask: 4095
            1
            2
            3
            4
            4095
            0
            1
            2
            */

    这段代码通过位与运算保证计算的结果范围始终是 0-4095 !

    用位运算汇总结果

    还有另外一段诡异的代码:

    return ((timestamp - twepoch) << timestampLeftShift) |
            (datacenterId << datacenterIdShift) |
            (workerId << workerIdShift) |
            sequence;

    为了弄清楚这段代码,

    首先 需要计算一下相关的值:

     private long twepoch = 1288834974657L; //起始时间戳,用于用当前时间戳减去这个时间戳,算出偏移量
    
        private long workerIdBits = 5L; //workerId占用的位数:5
        private long datacenterIdBits = 5L; //datacenterId占用的位数:5
        private long maxWorkerId = -1L ^ (-1L << workerIdBits);  // workerId可以使用的最大数值:31
        private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); // datacenterId可以使用的最大数值:31
        private long sequenceBits = 12L;//序列号占用的位数:12
    
        private long workerIdShift = sequenceBits; // 12
        private long datacenterIdShift = sequenceBits + workerIdBits; // 12+5 = 17
        private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; // 12+5+5 = 22
        private long sequenceMask = -1L ^ (-1L << sequenceBits);//4095
    
        private long lastTimestamp = -1L;
    其次 写个测试,把参数都写死,并运行打印信息,方便后面来核对计算结果:

    //---------------测试---------------
        public static void main(String[] args) {
            long timestamp = 1505914988849L;
            long twepoch = 1288834974657L;
            long datacenterId = 17L;
            long workerId = 25L;
            long sequence = 0L;
    
            System.out.printf("
    timestamp: %d 
    ",timestamp);
            System.out.printf("twepoch: %d 
    ",twepoch);
            System.out.printf("datacenterId: %d 
    ",datacenterId);
            System.out.printf("workerId: %d 
    ",workerId);
            System.out.printf("sequence: %d 
    ",sequence);
            System.out.println();
            System.out.printf("(timestamp - twepoch): %d 
    ",(timestamp - twepoch));
            System.out.printf("((timestamp - twepoch) << 22L): %d 
    ",((timestamp - twepoch) << 22L));
            System.out.printf("(datacenterId << 17L): %d 
    " ,(datacenterId << 17L));
            System.out.printf("(workerId << 12L): %d 
    ",(workerId << 12L));
            System.out.printf("sequence: %d 
    ",sequence);
    
            long result = ((timestamp - twepoch) << 22L) |
                    (datacenterId << 17L) |
                    (workerId << 12L) |
                    sequence;
            System.out.println(result);
    
        }
    
        /** 打印信息:
            timestamp: 1505914988849 
            twepoch: 1288834974657 
            datacenterId: 17 
            workerId: 25 
            sequence: 0 
            
            (timestamp - twepoch): 217080014192 
            ((timestamp - twepoch) << 22L): 910499571845562368 
            (datacenterId << 17L): 2228224 
            (workerId << 12L): 102400 
            sequence: 0 
            910499571847892992
        */

    代入位移的值得之后,就是这样:

    return ((timestamp - 1288834974657) << 22) |
            (datacenterId << 17) |
            (workerId << 12) |
            sequence;

    对于尚未知道的值,我们可以先看看概述 中对SnowFlake结构的解释,再代入在合法范围的值(windows系统可以用计算器方便计算这些值的二进制),来了解计算的过程。
    当然,由于我的测试代码已经把这些值写死了,那直接用这些值来手工验证计算结果即可:

     long timestamp = 1505914988849L;
            long twepoch = 1288834974657L;
            long datacenterId = 17L;
            long workerId = 25L;
            long sequence = 0L;
    设:timestamp  = 1505914988849,twepoch = 1288834974657
    1505914988849 - 1288834974657 = 217080014192 (timestamp相对于起始时间的毫秒偏移量),其(a)二进制左移22位计算过程如下:                                
    
                            |<--这里开始左右22位                            ‭
    00000000 00000000 000000|00 00110010 10001010 11111010 00100101 01110000 // a = 217080014192
    00001100 10100010 10111110 10001001 01011100 00|000000 00000000 00000000 // a左移22位后的值(la)
                                                   |<--这里后面的位补0
    设:datacenterId  = 17,其(b)二进制左移17位计算过程如下:
    
                       |<--这里开始左移17位    
    00000000 00000000 0|0000000 ‭00000000 00000000 00000000 00000000 00010001 // b = 17
    0000000‭0 00000000 00000000 00000000 00000000 0010001|0 00000000 00000000 // b左移17位后的值(lb)
                                                        |<--这里后面的位补0
    设:workerId  = 25,其(c)二进制左移12位计算过程如下:
    
                 |<--这里开始左移12位    
    ‭00000000 0000|0000 00000000 00000000 00000000 00000000 00000000 00011001‬ // c = 25
    00000000 00000000 00000000 00000000 00000000 00000001 1001|0000 00000000‬ // c左移12位后的值(lc)                                                                 
                                                              |<--这里后面的位补0
    设:sequence = 0,其二进制如下:
    
    00000000 00000000 00000000 00000000 00000000 00000000 0000‭0000 00000000‬ // sequence = 0

    现在知道了每个部分左移后的值(la,lb,lc),代码可以简化成下面这样去理解:

    return ((timestamp - 1288834974657) << 22) |
            (datacenterId << 17) |
            (workerId << 12) |
            sequence;
    -----------------------------
               |
               |简化
              |/
    -----------------------------
    return (la) |
            (lb) |
            (lc) |
            sequence;

    上面的管道符号|在Java中也是一个位运算符。其含义是:
    x的第n位和y的第n位 只要有一个是1,则结果的第n位也为1,否则为0,因此,我们对四个数的位或运算如下:

     1  |                    41                        |  5  |   5  |     12      
        
       0|0001100 10100010 10111110 10001001 01011100 00|00000|0 0000|0000 00000000 //la
       0|000000‭0 00000000 00000000 00000000 00000000 00|10001|0 0000|0000 00000000 //lb
       0|0000000 00000000 00000000 00000000 00000000 00|00000|1 1001|0000 00000000 //lc
    or 0|0000000 00000000 00000000 00000000 00000000 00|00000|0 0000|‭0000 00000000‬ //sequence
    ------------------------------------------------------------------------------------------
       0|0001100 10100010 10111110 10001001 01011100 00|10001|1 1001|‭0000 00000000‬ //结果:910499571847892992

    结果计算过程:
    1) 从至左列出1出现的下标(从0开始算):

    0000  1   1   00  1   0  1  000  1   0  1  0  1  1  1  1  1  0 1   000 1 00 1  0 1  0   1  1  1  0000 1   000  1  1  1  00  1‭   0000 0000 0000
          59  58      55     53      49     47    45 44 43 42 41   39      35   32   30     28 27 26      21       17 16 15     12

    2) 各个下标作为2的幂数来计算,并相加:

    $ 2^{59}+2^{58}+2^{55}+2^{53}+2^{49}+2^{47}+2^{45}+2^{44}+2^{43}+
    2^{42}+2^{41}+2^{39}+2^{35}+2^{32}+2^{30}+2^{28}+2^{27}+2^{26}+
    2^{21}+2^{17}+2^{16}+2^{15}+2^{2} $
    2^59}  : 576460752303423488
        2^58}  : 288230376151711744   
        2^55}  :  36028797018963968    
        2^53}  :   9007199254740992     
        2^49}  :    562949953421312      
        2^47}  :    140737488355328
        2^45}  :     35184372088832
        2^44}  :     17592186044416
        2^43}  :      8796093022208
        2^42}  :      4398046511104
        2^41}  :      2199023255552
        2^39}  :       549755813888
        2^35}  :        34359738368
        2^32}  :         4294967296
        2^30}  :         1073741824
        2^28}  :          268435456
        2^27}  :          134217728
        2^26}  :           67108864
        2^21}  :            2097152
        2^17}  :             131072
        2^16}  :              65536
        2^15}  :              32768
    +   2^12}  :               4096
    ---------------------------------------- 
                 910499571847892992

    计算截图:

    跟测试程序打印出来的结果一样,手工验证完毕!

    观察

    1  |                    41                        |  5  |   5  |     12      
        
       0|0001100 10100010 10111110 10001001 01011100 00|     |      |              //la
       0|                                              |10001|      |              //lb
       0|                                              |     |1 1001|              //lc
    or 0|                                              |     |      |‭0000 00000000‬ //sequence
    ------------------------------------------------------------------------------------------
       0|0001100 10100010 10111110 10001001 01011100 00|10001|1 1001|‭0000 00000000‬ //结果:910499571847892992
    • 纵向观察发现:

      • 在41位那一段,除了la一行有值,其它行(lb、lc、sequence)都是0,(我爸其它)
      • 在左起第一个5位那一段,除了lb一行有值,其它行都是0
      • 在左起第二个5位那一段,除了lc一行有值,其它行都是0
      • 按照这规律,如果sequence是0以外的其它值,12位那段也会有值的,其它行都是0
    • 横向观察发现:

      • 在la行,由于左移了5+5+12位,5、5、12这三段都补0了,所以la行除了41那段外,其它肯定都是0
      • 同理,lb、lc、sequnece行也以此类推
      • 正因为左移的操作,使四个不同的值移到了SnowFlake理论上相应的位置,然后四行做位或运算(只要有1结果就是1),就把4段的二进制数合并成一个二进制数。

    结论:
    所以,在这段代码中

    return ((timestamp - 1288834974657) << 22) |
            (datacenterId << 17) |
            (workerId << 12) |
            sequence;

    左移运算是为了将数值移动到对应的段(41、5、5,12那段因为本来就在最右,因此不用左移)。

    然后对每个左移后的值(la、lb、lc、sequence)做位或运算,是为了把各个短的数据合并起来,合并成一个二进制数。

    最后转换成10进制,就是最终生成的id

    扩展

    在理解了这个算法之后,其实还有一些扩展的事情可以做:

    1. 根据自己业务修改每个位段存储的信息。算法是通用的,可以根据自己需求适当调整每段的大小以及存储的信息。
    2. 解密id,由于id的每段都保存了特定的信息,所以拿到一个id,应该可以尝试反推出原始的每个段的信息。反推出的信息可以帮助我们分析。比如作为订单,可以知道该订单的生成日期,负责处理的数据中心等等。
  • 相关阅读:
    Java 动态代理机制分析及扩展
    记:从百度空间搬家到博客园写博客要写的舒服
    字符串与byte[]之间的转换
    关于中文的几个编码GB2312、GBK、GB18030、GB13000
    深入biztalk中各种端口绑定方式(七) 直接绑定之Partner Orchestration
    X.509 数字证书结构和实例
    深入biztalk中各种端口绑定方式(六) 直接绑定之Self Correlating
    在代码中使用biztalk类库建立Message和Part
    Byte[]和BASE64之间的转换
    深入biztalk中各种端口绑定方式(五) 直接绑定之MessageBox
  • 原文地址:https://www.cnblogs.com/qingmuchuanqi48/p/11878704.html
Copyright © 2011-2022 走看看