zoukankan      html  css  js  c++  java
  • 使用deepfashion实现自己的第一个分类网络

    这个过程主要分为三个步骤:

    数据预处理

    数据处理就是把数据按照一定的格式写出来,以便网路自己去读取数据
    1准备原始数据
    我的cloth数据一共是四个类别,每个类别有衣服47张,一用是188张图片,这些大小不一的原始图片转换成我们训练需要的shape。
    原始数据放在同一个文件夹下面:
    在这里插入图片描述
    2 编程实现
    制作Tfrecords,读取Tfrecords数据获得iamge和label,打印验证并保存生成的图片。

    
    #将原始图片转换成需要的大小,并将其保存
    #========================================================================================
    import os  
    import tensorflow as tf  
    from PIL import Image  
      
    #原始图片的存储位置
    orig_picture = 'dataset/cloth/'#我的数据放在这个问价加下面
     
    #生成图片的存储位置
    gen_picture = 'dataset/image_data/inputdata/'#E:/Re_train/image_data/inputdata/'
    
     
    #需要的识别类型
    classes = {'Graphic_Ringer_Tee','Sheer_Pleated_Front_Blouse','Sheer_Sequin_Tank','Single_Button_Blazer'} 
     
    #样本总数
    num_samples = 188
       
    #制作TFRecords数据  
    def create_record():  
        writer = tf.python_io.TFRecordWriter("cloth_train.tfrecords")  
        for index, name in enumerate(classes):  
            class_path = orig_picture +"/"+ name+"/"  
            for img_name in os.listdir(class_path):  
                img_path = class_path + img_name  
                img = Image.open(img_path)  
                img = img.resize((64, 64))    #设置需要转换的图片大小
                img_raw = img.tobytes()      #将图片转化为原生bytes  
                print (index,img_raw)  
                example = tf.train.Example(  
                   features=tf.train.Features(feature={  
                        "label": tf.train.Feature(int64_list=tf.train.Int64List(value=[index])),  
                        'img_raw': tf.train.Feature(bytes_list=tf.train.BytesList(value=[img_raw]))  
                   }))  
                writer.write(example.SerializeToString())  
        writer.close()  
        
    #=======================================================================================
    def read_and_decode(filename):  
        # 创建文件队列,不限读取的数量  
        filename_queue = tf.train.string_input_producer([filename])  
        # create a reader from file queue  
        reader = tf.TFRecordReader()  
        # reader从文件队列中读入一个序列化的样本  
        _, serialized_example = reader.read(filename_queue)  
        # get feature from serialized example  
        # 解析符号化的样本  
        features = tf.parse_single_example(  
            serialized_example,  
            features={  
                'label': tf.FixedLenFeature([], tf.int64),  
                'img_raw': tf.FixedLenFeature([], tf.string)  
            })  
        label = features['label']  
        img = features['img_raw']  
        img = tf.decode_raw(img, tf.uint8)  
        img = tf.reshape(img, [64, 64, 3])  
        #img = tf.cast(img, tf.float32) * (1. / 255) - 0.5  
        label = tf.cast(label, tf.int32)  
        return img, label  
     
    #=======================================================================================
    if __name__ == '__main__':  
        create_record()  
        batch = read_and_decode('cloth_train.tfrecords')  
        init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())  
          
        with tf.Session() as sess: #开始一个会话    
            sess.run(init_op)    
            coord=tf.train.Coordinator()    
            threads= tf.train.start_queue_runners(coord=coord)  
            
            for i in range(num_samples):    
                example, lab = sess.run(batch)#在会话中取出image和label    
                img=Image.fromarray(example, 'RGB')#这里Image是之前提到的 
                if lab==0:
                    img.save(gen_picture+'/'+'Graphic_Ringer_Tee'+'/'+str(i)+str(lab)+'.jpg')#存下图片;注意cwd后边加上‘/’ 
                elif lab==1:
                     img.save(gen_picture+'/'+'Sheer_Pleated_Front_Blouse'+'/'+str(i)+str(lab)+'.jpg')#存下图片;注意cwd后边加上‘/’
                elif lab==2:
                     img.save(gen_picture+'/'+'Sheer_Sequin_Tank'+'/'+str(i)+str(lab)+'.jpg')#存下图片;注意cwd后边加上‘/’
                elif lab==3:
                     img.save(gen_picture+'/'+'Single_Button_Blazer'+'/'+str(i)+str(lab)+'.jpg')#存下图片;注意cwd后边加上‘/’       
                print(gen_picture+'/'+str(i)+'samples'+str(lab)+'.jpg')
                print(example, lab)    
            coord.request_stop()    
            coord.join(threads)   
            sess.close()  
            
    #========================================================================================  
    
    
    

    程序运行结束后就会生成下面的四个文件夹,里面存放就是我们需要的数据
    在这里插入图片描述

    将第一步生成的图片进行sample和label操作,进行batch处理

    
    import os
    import math
    import numpy as np
    import tensorflow as tf
    import matplotlib.pyplot as plt
     
    #============================================================================
    #-----------------生成图片路径和标签的List------------------------------------
     
    train_dir = 'dataset/image_data/inputdata'
     
    Graphic_Ringer_Tee = []
    label_Graphic_Ringer_Tee = []
    Sheer_Pleated_Front_Blouse = []
    label_Sheer_Pleated_Front_Blouse = []
    Sheer_Sequin_Tank = []
    label_Sheer_Sequin_Tank = []
    Single_Button_Blazer = []
    label_Single_Button_Blazer = []
     
    #step1:获取'E:/Re_train/image_data/training_image'下所有的图片路径名,存放到
    #对应的列表中,同时贴上标签,存放到label列表中。
    def get_files(file_dir, ratio):
        for file in os.listdir(file_dir+'/Graphic_Ringer_Tee'):
            Graphic_Ringer_Tee.append(file_dir +'/Graphic_Ringer_Tee'+'/'+ file) 
            label_Graphic_Ringer_Tee.append(0)
        for file in os.listdir(file_dir+'/Sheer_Pleated_Front_Blouse'):
            Sheer_Pleated_Front_Blouse.append(file_dir +'/Sheer_Pleated_Front_Blouse'+'/'+file)
            label_Sheer_Pleated_Front_Blouse.append(1)
        for file in os.listdir(file_dir+'/Sheer_Sequin_Tank'):
            Sheer_Sequin_Tank.append(file_dir +'/Sheer_Sequin_Tank'+'/'+ file) 
            label_Sheer_Sequin_Tank.append(2)
        for file in os.listdir(file_dir+'/Single_Button_Blazer'):
            Single_Button_Blazer.append(file_dir +'/Single_Button_Blazer'+'/'+file)
            label_Single_Button_Blazer.append(3)
     
    #step2:对生成的图片路径和标签List做打乱处理把cat和dog合起来组成一个list(img和lab)
        image_list = np.hstack((Graphic_Ringer_Tee, Sheer_Pleated_Front_Blouse, Sheer_Sequin_Tank, Single_Button_Blazer))
        label_list = np.hstack((label_Graphic_Ringer_Tee, label_Sheer_Pleated_Front_Blouse, label_Sheer_Sequin_Tank, label_Single_Button_Blazer))
     
        #利用shuffle打乱顺序
        temp = np.array([image_list, label_list])
        temp = temp.transpose()
        np.random.shuffle(temp)
        
        #从打乱的temp中再取出list(img和lab)
        #image_list = list(temp[:, 0])
        #label_list = list(temp[:, 1])
        #label_list = [int(i) for i in label_list]
        #return image_list, label_list
        
        #将所有的img和lab转换成list
        all_image_list = list(temp[:, 0])
        all_label_list = list(temp[:, 1])
     
        #将所得List分为两部分,一部分用来训练tra,一部分用来测试val
        #ratio是测试集的比例
        n_sample = len(all_label_list)
        n_val = int(math.ceil(n_sample*ratio))   #测试样本数
        n_train = n_sample - n_val   #训练样本数
     
        tra_images = all_image_list[0:n_train]
        tra_labels = all_label_list[0:n_train]
        tra_labels = [int(float(i)) for i in tra_labels]
        val_images = all_image_list[n_train:-1]
        val_labels = all_label_list[n_train:-1]
        val_labels = [int(float(i)) for i in val_labels]
     
        return tra_images, tra_labels, val_images, val_labels
        
        
    #---------------------------------------------------------------------------
    #--------------------生成Batch----------------------------------------------
     
    #step1:将上面生成的List传入get_batch() ,转换类型,产生一个输入队列queue,因为img和lab
    #是分开的,所以使用tf.train.slice_input_producer(),然后用tf.read_file()从队列中读取图像
    #   image_W, image_H, :设置好固定的图像高度和宽度
    #   设置batch_size:每个batch要放多少张图片
    #   capacity:一个队列最大多少
    def get_batch(image, label, image_W, image_H, batch_size, capacity):
        #转换类型
        image = tf.cast(image, tf.string)
        label = tf.cast(label, tf.int32)
     
        # make an input queue
        input_queue = tf.train.slice_input_producer([image, label])
     
        label = input_queue[1]
        image_contents = tf.read_file(input_queue[0]) #read img from a queue  
        
    #step2:将图像解码,不同类型的图像不能混在一起,要么只用jpeg,要么只用png等。
        image = tf.image.decode_jpeg(image_contents, channels=3) 
        
    #step3:数据预处理,对图像进行旋转、缩放、裁剪、归一化等操作,让计算出的模型更健壮。
        image = tf.image.resize_image_with_crop_or_pad(image, image_W, image_H)
        image = tf.image.per_image_standardization(image)
     
    #step4:生成batch
    #image_batch: 4D tensor [batch_size, width, height, 3],dtype=tf.float32 
    #label_batch: 1D tensor [batch_size], dtype=tf.int32
        image_batch, label_batch = tf.train.batch([image, label],
                                                    batch_size= batch_size,
                                                    num_threads= 32, 
                                                    capacity = capacity)
        #重新排列label,行数为[batch_size]
        label_batch = tf.reshape(label_batch, [batch_size])
        image_batch = tf.cast(image_batch, tf.float32)
        return image_batch, label_batch            
     
    #========================================================================
    
    
    

    建立神经网络模型

    
    #=========================================================================
    import tensorflow as tf
    #=========================================================================
    #网络结构定义
        #输入参数:images,image batch、4D tensor、tf.float32、[batch_size, width, height, channels]
        #返回参数:logits, float、 [batch_size, n_classes]
    def inference(images, batch_size, n_classes):
    #一个简单的卷积神经网络,卷积+池化层x2,全连接层x2,最后一个softmax层做分类。
    #卷积层1
    #64个3x3的卷积核(3通道),padding=’SAME’,表示padding后卷积的图与原图尺寸一致,激活函数relu()
        with tf.variable_scope('conv1') as scope:
            
            weights = tf.Variable(tf.truncated_normal(shape=[3,3,3,64], stddev = 1.0, dtype = tf.float32), 
                                  name = 'weights', dtype = tf.float32)
            
            biases = tf.Variable(tf.constant(value = 0.1, dtype = tf.float32, shape = [64]),
                                 name = 'biases', dtype = tf.float32)
            
            conv = tf.nn.conv2d(images, weights, strides=[1,1,1,1], padding='SAME')
            pre_activation = tf.nn.bias_add(conv, biases)
            conv1 = tf.nn.relu(pre_activation, name= scope.name)
            
    #池化层1
    #3x3最大池化,步长strides为2,池化后执行lrn()操作,局部响应归一化,对训练有利。
        with tf.variable_scope('pooling1_lrn') as scope:
            pool1 = tf.nn.max_pool(conv1, ksize=[1,3,3,1],strides=[1,2,2,1],padding='SAME', name='pooling1')
            norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001/9.0, beta=0.75, name='norm1')
     
    #卷积层2
    #16个3x3的卷积核(16通道),padding=’SAME’,表示padding后卷积的图与原图尺寸一致,激活函数relu()
        with tf.variable_scope('conv2') as scope:
            weights = tf.Variable(tf.truncated_normal(shape=[3,3,64,16], stddev = 0.1, dtype = tf.float32), 
                                  name = 'weights', dtype = tf.float32)
            
            biases = tf.Variable(tf.constant(value = 0.1, dtype = tf.float32, shape = [16]),
                                 name = 'biases', dtype = tf.float32)
            
            conv = tf.nn.conv2d(norm1, weights, strides = [1,1,1,1],padding='SAME')
            pre_activation = tf.nn.bias_add(conv, biases)
            conv2 = tf.nn.relu(pre_activation, name='conv2')
     
    #池化层2
    #3x3最大池化,步长strides为2,池化后执行lrn()操作,
        #pool2 and norm2
        with tf.variable_scope('pooling2_lrn') as scope:
            norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001/9.0,beta=0.75,name='norm2')
            pool2 = tf.nn.max_pool(norm2, ksize=[1,3,3,1], strides=[1,1,1,1],padding='SAME',name='pooling2')
     
    #全连接层3
    #128个神经元,将之前pool层的输出reshape成一行,激活函数relu()
        with tf.variable_scope('local3') as scope:
            reshape = tf.reshape(pool2, shape=[batch_size, -1])
            dim = reshape.get_shape()[1].value
            weights = tf.Variable(tf.truncated_normal(shape=[dim,128], stddev = 0.005, dtype = tf.float32),
                                 name = 'weights', dtype = tf.float32)
            
            biases = tf.Variable(tf.constant(value = 0.1, dtype = tf.float32, shape = [128]), 
                                 name = 'biases', dtype=tf.float32)
            
            local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
            
    #全连接层4
    #128个神经元,激活函数relu() 
        with tf.variable_scope('local4') as scope:
            weights = tf.Variable(tf.truncated_normal(shape=[128,128], stddev = 0.005, dtype = tf.float32),
                                  name = 'weights',dtype = tf.float32)
            
            biases = tf.Variable(tf.constant(value = 0.1, dtype = tf.float32, shape = [128]),
                                 name = 'biases', dtype = tf.float32)
            
            local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')
     
    #dropout层        
    #    with tf.variable_scope('dropout') as scope:
    #        drop_out = tf.nn.dropout(local4, 0.8)
                
            
    #Softmax回归层
    #将前面的FC层输出,做一个线性回归,计算出每一类的得分,在这里是2类,所以这个层输出的是两个得分。
        with tf.variable_scope('softmax_linear') as scope:
            weights = tf.Variable(tf.truncated_normal(shape=[128, n_classes], stddev = 0.005, dtype = tf.float32),
                                  name = 'softmax_linear', dtype = tf.float32)
            
            biases = tf.Variable(tf.constant(value = 0.1, dtype = tf.float32, shape = [n_classes]),
                                 name = 'biases', dtype = tf.float32)
            
            softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')
     
        return softmax_linear
     
    #-----------------------------------------------------------------------------
    #loss计算
        #传入参数:logits,网络计算输出值。labels,真实值,在这里是0或者1
        #返回参数:loss,损失值
    def losses(logits, labels):
        with tf.variable_scope('loss') as scope:
            cross_entropy =tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels, name='xentropy_per_example')
            loss = tf.reduce_mean(cross_entropy, name='loss')
            tf.summary.scalar(scope.name+'/loss', loss)
        return loss
     
    #--------------------------------------------------------------------------
    #loss损失值优化
        #输入参数:loss。learning_rate,学习速率。
        #返回参数:train_op,训练op,这个参数要输入sess.run中让模型去训练。
    def trainning(loss, learning_rate):
        with tf.name_scope('optimizer'):
            optimizer = tf.train.AdamOptimizer(learning_rate= learning_rate)
            global_step = tf.Variable(0, name='global_step', trainable=False)
            train_op = optimizer.minimize(loss, global_step= global_step)
        return train_op
     
    #-----------------------------------------------------------------------
    #评价/准确率计算
        #输入参数:logits,网络计算值。labels,标签,也就是真实值,在这里是0或者1。
        #返回参数:accuracy,当前step的平均准确率,也就是在这些batch中多少张图片被正确分类了。
    def evaluation(logits, labels):
        with tf.variable_scope('accuracy') as scope:
            correct = tf.nn.in_top_k(logits, labels, 1)
            correct = tf.cast(correct, tf.float16)
            accuracy = tf.reduce_mean(correct)
            tf.summary.scalar(scope.name+'/accuracy', accuracy)
        return accuracy
     
    #========================================================================
    
    
    

    网路训练

    
    #======================================================================
    #导入文件
    import os
    import numpy as np
    import tensorflow as tf
    #import input_data
    #import model
     
    #变量声明
    N_CLASSES = 4  #husky,jiwawa,poodle,qiutian
    IMG_W = 64   # resize图像,太大的话训练时间久
    IMG_H = 64
    BATCH_SIZE =20
    CAPACITY = 200
    MAX_STEP = 200 # 一般大于10K
    learning_rate = 0.0001 # 一般小于0.0001
     
    #获取批次batch
    train_dir = 'dataset/image_data/inputdata'   #训练样本的读入路径
    logs_train_dir = 'dataset/log'    #logs存储路径
    #logs_test_dir =  'E:/Re_train/image_data/test'        #logs存储路径
     
    #train, train_label = input_data.get_files(train_dir)
    train, train_label, val, val_label = get_files(train_dir, 0.3)
    #训练数据及标签
    train_batch,train_label_batch = get_batch(train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
    #测试数据及标签
    val_batch, val_label_batch = get_batch(val, val_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY) 
     
    #训练操作定义
    train_logits = inference(train_batch, BATCH_SIZE, N_CLASSES)
    train_loss = losses(train_logits, train_label_batch)        
    train_op = trainning(train_loss, learning_rate)
    train_acc = evaluation(train_logits, train_label_batch)
     
    #测试操作定义
    test_logits = inference(val_batch, BATCH_SIZE, N_CLASSES)
    test_loss = losses(test_logits, val_label_batch)        
    test_acc = evaluation(test_logits, val_label_batch)
     
    #这个是log汇总记录
    summary_op = tf.summary.merge_all() 
     
    #产生一个会话
    sess = tf.Session()  
    #产生一个writer来写log文件
    train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph) 
    #val_writer = tf.summary.FileWriter(logs_test_dir, sess.graph) 
    #产生一个saver来存储训练好的模型
    saver = tf.train.Saver()
    #所有节点初始化
    sess.run(tf.global_variables_initializer())  
    #队列监控
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)
     
    #进行batch的训练
    try:
        #执行MAX_STEP步的训练,一步一个batch
        for step in np.arange(MAX_STEP):
            if coord.should_stop():
                break
            #启动以下操作节点,有个疑问,为什么train_logits在这里没有开启?
            _, tra_loss, tra_acc = sess.run([train_op, train_loss, train_acc])
            
            #每隔50步打印一次当前的loss以及acc,同时记录log,写入writer   
            if step % 10  == 0:
                print('Step %d, train loss = %.2f, train accuracy = %.2f%%' %(step, tra_loss, tra_acc*100.0))
                summary_str = sess.run(summary_op)
                train_writer.add_summary(summary_str, step)
            #每隔100步,保存一次训练好的模型
            if (step + 1) == MAX_STEP:
                checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)
           
    except tf.errors.OutOfRangeError:
        print('Done training -- epoch limit reached')
     
    finally:
        coord.request_stop()
        
    #========================================================================
    
    
    

    结果如下:
    在这里插入图片描述

    测试

    
    #=============================================================================
    from PIL import Image
    import numpy as np
    import tensorflow as tf
    import matplotlib.pyplot as plt
    
    #=======================================================================
    #获取一张图片
    def get_one_image(train):
        #输入参数:train,训练图片的路径
        #返回参数:image,从训练图片中随机抽取一张图片
        n = len(train)
        ind = np.random.randint(0, n)
        img_dir = train[ind]   #随机选择测试的图片
     
        img = Image.open(img_dir)
        plt.imshow(img)
        imag = img.resize([64, 64])  #由于图片在预处理阶段以及resize,因此该命令可略
        image = np.array(imag)
        return image
     
    #--------------------------------------------------------------------
    #测试图片
    def evaluate_one_image(image_array):
        with tf.Graph().as_default():
           BATCH_SIZE = 1
           N_CLASSES = 4
     
           image = tf.cast(image_array, tf.float32)
           image = tf.image.per_image_standardization(image)
           image = tf.reshape(image, [1, 64, 64, 3])
     
           logit = inference(image, BATCH_SIZE, N_CLASSES)
     
           logit = tf.nn.softmax(logit)
     
           x = tf.placeholder(tf.float32, shape=[64, 64, 3])
     
           # you need to change the directories to yours.
           logs_train_dir = 'dataset/log/'
     
           saver = tf.train.Saver()
     
           with tf.Session() as sess:
     
               print("Reading checkpoints...")
               ckpt = tf.train.get_checkpoint_state(logs_train_dir)
               if ckpt and ckpt.model_checkpoint_path:
                   global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
                   saver.restore(sess, ckpt.model_checkpoint_path)
                   print('Loading success, global_step is %s' % global_step)
               else:
                   print('No checkpoint file found')
     
               prediction = sess.run(logit, feed_dict={x: image_array})
               max_index = np.argmax(prediction)
               if max_index==0:
                   print('This is a 0 with possibility %.6f' %prediction[:, 0])
               elif max_index==1:
                   print('This is a 1 with possibility %.6f' %prediction[:, 1])
               elif max_index==2:
                   print('This is a 2 with possibility %.6f' %prediction[:, 2])
               else:
                   print('This is a 3 with possibility %.6f' %prediction[:, 3])
     
    #------------------------------------------------------------------------
                   
    if __name__ == '__main__':
        
        train_dir = 'dataset/image_data/inputdata'
        train, train_label, val, val_label = get_files(train_dir, 0.3)
        img = get_one_image(val)  #通过改变参数train or val,进而验证训练集或测试集
        evaluate_one_image(img)
    #===========================================================================
    
    
    

    结果如下:
    在这里插入图片描述

    来源:https://blog.csdn.net/yychentracy/article/details/85158010

  • 相关阅读:
    slice()、substring()、substr()的区别用法
    程序员如何快速上手一个自己不太熟悉的新项目?有什么技巧?
    计算重复字符串长度
    计算机视觉算法研发岗招聘要求
    C++进阶STL-2
    C++进阶STL-1
    拼硬币
    序列找数
    寻找合法字符串
    字符串是否由子串拼接
  • 原文地址:https://www.cnblogs.com/qixidi/p/10189801.html
Copyright © 2011-2022 走看看