http://acm.hdu.edu.cn/showproblem.php?pid=1024
Max Sum Plus Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 20887 Accepted Submission(s): 6960
Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
Sample Output
6
8
Hint
Huge input, scanf and dynamic programming is recommended.
题目大意:在一个元素个数为m的序列中取出互不交叉的n段,找出最大值
dp[i - 1][j - 1]表示前j - 1个数取i - 1段得到的最大和,第j个数a[j]有两种情况:
1.a[j]单独作为一段,为第i段;
2.a[j]是紧跟第j - 1个数a[j - 1]之后,仍是第i - 1段的一部分。
由于数据太大所以将二维数组转化为一维数组
Max[j]表示上一个状态最终得到的最大值
dp[j] = max(dp[j - 1] + a[j], Max[j - 1] + a[j]);
dp[j - 1] + a[j] 表示情况2 (a[j]是紧跟第j - 1个数a[j - 1]之后,仍是第i - 1段的一部分)
Max[j - 1] + a[j] 表示情况1 ( a[j]单独作为一段,为第i段)
详解亲请参考:
http://blog.csdn.net/a342374071/article/details/6701544
#include<stdio.h> #include<math.h> #include<stdlib.h> #include<string.h> #include<algorithm> #define INF 0x3f3f3f3f #define N 1000010 using namespace std; int dp[N], Max[N], a[N]; int main() { int n, m, sum; while(~scanf("%d%d", &n, &m)) { int i, j; memset(dp, 0, sizeof(dp)); memset(Max, 0, sizeof(Max)); for(i = 1 ; i <= m ; i++) scanf("%d", &a[i]); for(i = 1 ; i <= n ; i++)//i表示选取的段数 { sum = -INF; for(j = i ; j <= m ; j++)//j表示元素的个数 { dp[j] = max(dp[j - 1] + a[j], Max[j - 1] + a[j]);//此处见上面解释 Max[j - 1] = sum;//Max[j - 1]记录j - 1这一状态得到的最大值 sum = max(sum, dp[j]); } Max[j - 1] = sum;//状态更新 } printf("%d ", sum); } return 0; }