zoukankan      html  css  js  c++  java
  • Codeforces Round #334 (Div. 2) D. Moodular Arithmetic 环的个数

    D. Moodular Arithmetic

    Time Limit: 20 Sec

    Memory Limit: 256 MB

    题目连接

    http://codeforces.com/contest/604/problem/D

    Description

    As behooves any intelligent schoolboy, Kevin Sun is studying psycowlogy, cowculus, and cryptcowgraphy at the Bovinia State University (BGU) under Farmer Ivan. During his Mathematics of Olympiads (MoO) class, Kevin was confronted with a weird functional equation and needs your help. For two fixed integers k and p, where p is an odd prime number, the functional equation states that

    for some function . (This equation should hold for any integer x in the range 0 top - 1, inclusive.)

    It turns out that f can actually be many different functions. Instead of finding a solution, Kevin wants you to count the number of distinct functions f that satisfy this equation. Since the answer may be very large, you should print your result modulo 109 + 7.

    Input

    The input consists of two space-separated integers p and k (3 ≤ p ≤ 1 000 000, 0 ≤ k ≤ p - 1) on a single line. It is guaranteed that pis an odd prime number.

    Output

    Print a single integer, the number of distinct functions f modulo 109 + 7.

    Sample Input

    3 2

    Sample Output

    3

    HINT

    题意

    给你k,p

    然后让你构造映射 f(k*x %p) = k*f(x)%p

    然后问你一共有多少种映射满足这个条件

    题解:

    由于gcd(k,p)==1,那么很显然k*x%p = z,这个等式中,x属于(0,p-1),z属于(0,p-1),那么的话,一定是一一对应的

    那么我们就可以找环了,如果其中y = k*x%p中和其他的构成了一个环,那么这个环中只要确定了一个数,那么这个环中就能够全部确认

    所以答案就和环的个数有关了~

    再特判k = 1和k = 0的情况

    代码:

    #include<iostream>
    #include<stdio.h>
    using namespace std;
    
    const long long mod = 1e9+7;
    
    #define maxn 1000005
    long long quickpow(long long  m,long long n)
    {
        long long b = 1;
        while (n > 0)
        {
              if (n & 1)
                 b = (b*m)%mod;
              n = n >> 1 ;
              m = (m*m)%mod;
        }
        return b;
    }
    
    long long a[maxn];
    int vis[maxn];
    long long p,k;
    void dfs(long long x)
    {
        if(vis[x])return;
        vis[x]=1;
        dfs(k*x%p);
    }
    int main()
    {
    
        scanf("%lld%lld",&p,&k);
        if(k==0)
        {
            printf("%lld
    ",quickpow(p,p-1));
            return 0;
        }
        if(k==1)
        {
            printf("%lld
    ",quickpow(p,p));
            return 0;
        }
        long long ans = 0;
        for(int i=1;i<p;i++)
        {
            if(vis[i])continue;
            dfs(i);
            ans++;
        }
        printf("%lld
    ",quickpow(p,ans));
    }
  • 相关阅读:
    概念辨析:Spring中@AutoWired和@Bean的区别
    打牢基础知识,避免采坑
    golang服务端编程
    如何避免写bug的一些实例和技巧
    常见数学问题的解题思路
    App开发需要了解的基本技术
    vue项目webpack打包
    vue项目中使用lottie动画
    js函数-参数默认值
    powershell操作excel
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5012841.html
Copyright © 2011-2022 走看看