zoukankan      html  css  js  c++  java
  • Educational Codeforces Round 12 F. Four Divisors 求小于x的素数个数(待解决)

    F. Four Divisors

    题目连接:

    http://www.codeforces.com/contest/665/problem/F

    Description

    If an integer a is divisible by another integer b, then b is called the divisor of a.

    For example: 12 has positive 6 divisors. They are 1, 2, 3, 4, 6 and 12.

    Let’s define a function D(n) — number of integers between 1 and n (inclusive) which has exactly four positive divisors.

    Between 1 and 10 only the integers 6, 8 and 10 has exactly four positive divisors. So, D(10) = 3.

    You are given an integer n. You have to calculate D(n).

    Input

    The only line contains integer n (1 ≤ n ≤ 1011) — the parameter from the problem statement.

    Output

    Print the only integer c — the number of integers between 1 and n with exactly four divisors.

    Sample Input

    10

    Sample Output

    3

    Hint

    题意

    给你n,问你n以内有多少个数的因子数恰好有4个

    题解:

    数显然就两种可能pq或者qqq,其中p,q都是素数

    然后qqq这个可以在n^1/3的复杂度莽出来

    pq的话,我们枚举小的那个,然后只要能够快速求出count([n/p])就好了

    这玩意儿我扒了一份版……

    研究研究……

    代码

    #include<bits/stdc++.h>
    using namespace std;
    
    #define MAXN 100
    #define MAXM 100010
    #define MAXP 666666
    #define MAX 10000010
    #define clr(ar) memset(ar, 0, sizeof(ar))
    #define read() freopen("lol.txt", "r", stdin)
    #define dbg(x) cout << #x << " = " << x << endl
    #define chkbit(ar, i) (((ar[(i) >> 6]) & (1 << (((i) >> 1) & 31))))
    #define setbit(ar, i) (((ar[(i) >> 6]) |= (1 << (((i) >> 1) & 31))))
    #define isprime(x) (( (x) && ((x)&1) && (!chkbit(ar, (x)))) || ((x) == 2))
    
    using namespace std;
    
    namespace pcf{
        long long dp[MAXN][MAXM];
        unsigned int ar[(MAX >> 6) + 5] = {0};
        int len = 0, primes[MAXP], counter[MAX];
    
        void Sieve(){
            setbit(ar, 0), setbit(ar, 1);
            for (int i = 3; (i * i) < MAX; i++, i++){
                if (!chkbit(ar, i)){
                    int k = i << 1;
                    for (int j = (i * i); j < MAX; j += k) setbit(ar, j);
                }
            }
    
            for (int i = 1; i < MAX; i++){
                counter[i] = counter[i - 1];
                if (isprime(i)) primes[len++] = i, counter[i]++;
            }
        }
    
        void init(){
            Sieve();
            for (int n = 0; n < MAXN; n++){
                for (int m = 0; m < MAXM; m++){
                    if (!n) dp[n][m] = m;
                    else dp[n][m] = dp[n - 1][m] - dp[n - 1][m / primes[n - 1]];
                }
            }
        }
    
        long long phi(long long m, int n){
            if (n == 0) return m;
            if (primes[n - 1] >= m) return 1;
            if (m < MAXM && n < MAXN) return dp[n][m];
            return phi(m, n - 1) - phi(m / primes[n - 1], n - 1);
        }
    
        long long Lehmer(long long m){
            if (m < MAX) return counter[m];
    
            long long w, res = 0;
            int i, a, s, c, x, y;
            s = sqrt(0.9 + m), y = c = cbrt(0.9 + m);
            a = counter[y], res = phi(m, a) + a - 1;
            for (i = a; primes[i] <= s; i++) res = res - Lehmer(m / primes[i]) + Lehmer(primes[i]) - 1;
            return res;
        }
    }
    
    long long solve(long long n){
        int i, j, k, l;
        long long x, y, res = 0;
    
        for (i = 0; i < pcf::len; i++){
            x = pcf::primes[i], y = n / x;
            if ((x * x) > n) break;
            res += (pcf::Lehmer(y) - pcf::Lehmer(x));
        }
    
        for (i = 0; i < pcf::len; i++){
            x = pcf::primes[i];
            if ((x * x * x) > n) break;
            res++;
        }
    
        return res;
    }
    
    int main(){
        pcf::init();
        long long n, res;
        cin>>n;
        printf("%lld
    ",solve(n));
        return 0;
    }
  • 相关阅读:
    dddd
    asp.net web api rest风格与RPC风格调用
    使用ASP.NET WEB API文档来上传异步文件
    Fiddler2
    asp.net mvc3 局部页面@RenderBody @RenderPage@RenderSection使用方法详细说明
    paip.提升性能3倍使用栈跟VirtualAlloc代替堆的使用.
    paip.自适应网页设计 跟 响应式 设计的区别跟原理and实践总结
    paip.关于动画特效原理 html js 框架总结
    paip.utf8,unicode编码的本质输出unicode文件原理 python
    paip. 混合编程的实现resin4 (自带Quercus ) 配置 php 环境
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5423130.html
Copyright © 2011-2022 走看看