zoukankan      html  css  js  c++  java
  • Codeforces Round #FF (Div. 1) B. DZY Loves Modification 优先队列

    B. DZY Loves Modification

    题目连接:

    http://www.codeforces.com/contest/446/problem/B

    Description

    As we know, DZY loves playing games. One day DZY decided to play with a n × m matrix. To be more precise, he decided to modify the matrix with exactly k operations.

    Each modification is one of the following:

    Pick some row of the matrix and decrease each element of the row by p. This operation brings to DZY the value of pleasure equal to the sum of elements of the row before the decreasing.
    Pick some column of the matrix and decrease each element of the column by p. This operation brings to DZY the value of pleasure equal to the sum of elements of the column before the decreasing.
    DZY wants to know: what is the largest total value of pleasure he could get after performing exactly k modifications? Please, help him to calculate this value.

    Input

    The first line contains four space-separated integers n, m, k and p (1 ≤ n, m ≤ 103; 1 ≤ k ≤ 106; 1 ≤ p ≤ 100).

    Then n lines follow. Each of them contains m integers representing aij (1 ≤ aij ≤ 103) — the elements of the current row of the matrix.

    Output

    Output a single integer — the maximum possible total pleasure value DZY could get.

    Sample Input

    2 2 2 2
    1 3
    2 4

    Sample Output

    11

    Hint

    题意

    有一个n*m的矩阵,你需要操作k次,每次操作是选择一行或者一列,使得ans+=这一行或者这一列的和

    然后再使得这一行或者这一列的数全部减去p

    现在问你他操作k次之后,最多获得多少分数

    题解:

    假设你最后操作了k次,那么对于整体的答案,你需要减去i*(k-i)*p这么多

    这样我们就把p给处理出来了

    现在我们再把行和列都分开,然后用一个优先队列去处理就好了

    然后这道题就结束了……

    代码

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 1e6+7;
    long long c[maxn],r[maxn],ll[maxn],rr[maxn];
    long long a[1005][1005];
    int n,m,k,p;
    int main()
    {
        scanf("%d%d%d%d",&n,&m,&k,&p);
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)
            {
                scanf("%lld",&a[i][j]);
                ll[i]+=a[i][j];
                rr[j]+=a[i][j];
            }
        }
        priority_queue<long long>Q;
        for(int i=1;i<=n;i++)Q.push(ll[i]);
        for(int i=1;i<=k;i++)
        {
            int now = Q.top();Q.pop();
            c[i]=c[i-1]+now;
            now-=m*p;
            Q.push(now);
        }
        while(!Q.empty())Q.pop();
        for(int i=1;i<=m;i++)Q.push(rr[i]);
        for(int i=1;i<=k;i++)
        {
            int now=Q.top();Q.pop();
            r[i]=r[i-1]+now;
            now-=n*p;
            Q.push(now);
        }
        long long ans = -1LL<<60;
        for(int i=0;i<=k;i++)
            ans=max(ans,c[i]+r[k-i]-1ll*i*(k-i)*p);
        cout<<ans<<endl;
    }
  • 相关阅读:
    在MonoTouch中自定义表格 狼人:
    Android开发进阶:如何读写Android文件 狼人:
    Windows Phone 7 开发之:工具栏 狼人:
    Android平台Qt开发入门教程 狼人:
    PySide中的信号和槽 狼人:
    sql server 2005 通过代理定时备份数据库
    Java I/O流操作(三)File文件操作及打印流和序列流合并流
    分别介绍以下数据提供者连接各种数据库的方法 (vb.net)
    OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波
    软件架构设计之Utility模块——string
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5528383.html
Copyright © 2011-2022 走看看