zoukankan      html  css  js  c++  java
  • Codeforces Round #360 (Div. 2) D. Remainders Game 数学

    D. Remainders Game

    题目连接:

    http://www.codeforces.com/contest/688/problem/D

    Description

    Today Pari and Arya are playing a game called Remainders.

    Pari chooses two positive integer x and k, and tells Arya k but not x. Arya have to find the value . There are n ancient numbers c1, c2, ..., cn and Pari has to tell Arya if Arya wants. Given k and the ancient values, tell us if Arya has a winning strategy independent of value of x or not. Formally, is it true that Arya can understand the value for any positive integer x?

    Note, that means the remainder of x after dividing it by y.

    Input

    The first line of the input contains two integers n and k (1 ≤ n,  k ≤ 1 000 000) — the number of ancient integers and value k that is chosen by Pari.

    The second line contains n integers c1, c2, ..., cn (1 ≤ ci ≤ 1 000 000).

    Output

    Print "Yes" (without quotes) if Arya has a winning strategy independent of value of x, or "No" (without quotes) otherwise.

    Sample Input

    4 5
    2 3 5 12

    Sample Output

    Yes

    Hint

    题意

    给你k和n

    你现在想要知道x,但是人家不告诉你

    给你n个ci,表示你可以知道x%ci

    问你能不能唯一确定x

    题解

    首先,根据剩余定理,如果我们想知道x%m等于多少,当且仅当我们知道x%m1,x%m2..x%mr分别等于多少,其中m1m2...mr=m,并且mi相互互质,即构成独立剩余系。令m的素数分解为m=p1^k1p2^k2...pr^kr,如果任意i,都有pi^ki的倍数出现在集合中,那么m就能被猜出来。
    这个问题等价于问LCM(ci)%m是否等于0

    所以只要求出LCM(ci)即可,不过要边求lcm,边和m取gcd,防止爆int

    代码

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 1e6+6;
    int n;
    long long k,c[maxn];
    long long gcd(long long a,long long b){
        if(b==0)return a;
        return gcd(b,a%b);
    }
    long long lcm(long long a,long long b){
        return a*b/gcd(a,b);
    }
    int main(){
        scanf("%d",&n);
        scanf("%lld",&k);
        long long tmp = 1;
        for(int i=1;i<=n;i++)
        {
            scanf("%lld",&c[i]);
            tmp=lcm(tmp,c[i]);
            tmp=gcd(tmp,k);
            if(tmp==k){
                printf("Yes
    ");
                return 0;
            }
        }
        printf("No
    ");
    }
  • 相关阅读:
    Android获取手机内存和sd卡相关信息
    总结(创建快捷方式等)
    正则是个好东西
    Android自定义AlertDialog
    Eclipse生成author等注释
    day18 io多路复用
    json 模块
    re 模块
    random 模块
    hashlib 模块
  • 原文地址:https://www.cnblogs.com/qscqesze/p/5631167.html
Copyright © 2011-2022 走看看