zoukankan      html  css  js  c++  java
  • Codeforces Beta Round #17 A

    A - Noldbach problem

    题面链接

    http://codeforces.com/contest/17/problem/A

    题面

    Nick is interested in prime numbers. Once he read about Goldbach problem. It states that every even integer greater than 2 can be expressed as the sum of two primes. That got Nick's attention and he decided to invent a problem of his own and call it Noldbach problem. Since Nick is interested only in prime numbers, Noldbach problem states that at least k prime numbers from 2 to n inclusively can be expressed as the sum of three integer numbers: two neighboring prime numbers and 1. For example, 19 = 7 + 11 + 1, or 13 = 5 + 7 + 1.

    Two prime numbers are called neighboring if there are no other prime numbers between them.

    You are to help Nick, and find out if he is right or wrong.

    输入

    The first line of the input contains two integers n (2 ≤ n ≤ 1000) and k (0 ≤ k ≤ 1000).

    输出

    Output YES if at least k prime numbers from 2 to n inclusively can be expressed as it was described above. Otherwise output NO.

    题意

    问你在[2,n]里面是否至少有k个质数由1+两个相邻的素数组成呢?

    题解

    直接暴力模拟就好了嘛

    代码

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn = 1005;
    int pri[maxn],n,k;
    void pre()
    {
        pri[0]=1,pri[1]=1;
        for(int i=2;i<maxn;i++){
            if(pri[i])continue;
            for(int j=i+i;j<maxn;j+=i)
                pri[j]=1;
        }
    }
    int main()
    {
        pre();
        scanf("%d%d",&n,&k);
        int ans = 0;
        for(int i=2;i<=n;i++){
            if(pri[i])continue;
            int flag = 0;
            for(int j=2;j<i;j++){
                if(pri[j])continue;
                for(int k=j+2;k+j<=i;k++){
                    if(!pri[k]&&!pri[j]&&k+j==i-1)
                        flag = 1;
                    if(!pri[k])break;
                }
            }
            if(flag)ans++;
        }
        if(ans>=k)cout<<"YES"<<endl;
        else cout<<"NO"<<endl;
    }
  • 相关阅读:
    ETL工具主流产品
    深入了解当前ETL中用到的一些基本技术
    用C#实现通用守护进程
    80端口被system占用的问题
    Python Web 性能和压力测试 multi-mechanize
    [python]用profile协助程序性能优化
    python代码优化技巧
    转:Java学习路线图
    SecureCRT 颜色
    深度学习(Deep Learning)算法简介
  • 原文地址:https://www.cnblogs.com/qscqesze/p/6169840.html
Copyright © 2011-2022 走看看