zoukankan      html  css  js  c++  java
  • 洛谷P3366 【模板】最小生成树 题解 Prim+堆优化

    题目链接:https://www.luogu.com.cn/problem/P3366

    标准Prim((O(n^2+m)))代码:

    #include <bits/stdc++.h>
    using namespace std;
    const int maxn = 5050, maxm = 400040;
    struct Edge {
        int v, w, nxt;
        Edge() {};
        Edge(int _v, int _w, int _nxt) { v = _v; w = _w; nxt = _nxt; }
    } edge[maxm];
    int n, m, head[maxn], ecnt;
    void init() {
        ecnt = 0;
        memset(head, -1, sizeof(int)*(n+1));
    }
    void addedge(int u, int v, int w) {
        edge[ecnt] = Edge(v, w, head[u]); head[u] = ecnt ++;
        edge[ecnt] = Edge(u, w, head[v]); head[v] = ecnt ++;
    }
    int cost[maxn], ans;
    bool vis[maxn];
    void prim() {
        memset(cost, -1, sizeof(int)*(n+1));
        cost[1] = 0;
        for (int t = 0; t < n; t ++) {
            int u = -1;
            for (int i = 1; i <= n; i ++) {
                if (!vis[i] && cost[i] != -1 && (u == -1 || cost[u] > cost[i])) u = i;
            }
            ans += cost[u];
            vis[u] = true;
            for (int i = head[u]; i != -1; i = edge[i].nxt) {
                int v = edge[i].v, w = edge[i].w;
                if (cost[v] == -1 || cost[v] > w) cost[v] = w;
            }
        }
    }
    int main() {
        cin >> n >> m;
        init();
        while (m --) {
            int u, v, w;
            cin >> u >> v >> w;
            addedge(u, v, w);
        }
        prim();
        cout << ans << endl;
        return 0;
    }
    

    然后我寻思 Prim 和 Dijkstra 思想是一样的(不知道这么理解对不对囧~),所以可以采用 Dijkstra 一样的方法对 Prim 进行堆优化。

    Prim+优先队列((O(m cdot log m)))代码:

    #include <bits/stdc++.h>
    using namespace std;
    const int maxn = 5050, maxm = 400040;
    struct Edge {
        int v, w, nxt;
        Edge() {};
        Edge(int _v, int _w, int _nxt) { v = _v; w = _w; nxt = _nxt; }
    } edge[maxm];
    int n, m, head[maxn], ecnt;
    void init() {
        ecnt = 0;
        memset(head, -1, sizeof(int)*(n+1));
    }
    void addedge(int u, int v, int w) {
        edge[ecnt] = Edge(v, w, head[u]); head[u] = ecnt ++;
        edge[ecnt] = Edge(u, w, head[v]); head[v] = ecnt ++;
    }
    int cost[maxn], ans;
    bool vis[maxn];
    struct Node {
        int u, cost;
        Node() {};
        Node(int _u, int _cost) { u = _u; cost = _cost; }
        bool operator < (const Node x) const {
            return cost > x.cost;
        }
    };
    priority_queue<Node> que;
    void prim() {
        memset(cost, -1, sizeof(int)*(n+1));
        que.push(Node(1, 0));
        while (!que.empty()) {
            Node nd = que.top();
            que.pop();
            int u = nd.u;
            if (vis[u]) continue;
            vis[u] = true;
            ans += nd.cost;
            for (int i = head[u]; i != -1; i = edge[i].nxt) {
                int v = edge[i].v, w = edge[i].w;
                if (cost[v] == -1 || cost[v] > w) {
                    cost[v] = w;
                    que.push(Node(v, w));
                }
            }
        }
    }
    int main() {
        cin >> n >> m;
        init();
        while (m --) {
            int u, v, w;
            cin >> u >> v >> w;
            addedge(u, v, w);
        }
        prim();
        cout << ans << endl;
        return 0;
    }
    
  • 相关阅读:
    LeetCode换酒问题Swift
    LeetCode种花问题Swift
    LeetCode排序数组Swift
    retain, release, dealloc与retainCount的源码分析
    KVO后[obj class]与object_getClass(id obj)的结果竟会不一致?
    react的一些总结(与vue的比较学习)
    函数式编程---小记
    typescript学习--------进阶(2)
    学习typescript--------进阶
    学习typescript-----基础
  • 原文地址:https://www.cnblogs.com/quanjun/p/12927725.html
Copyright © 2011-2022 走看看