题目链接:https://www.luogu.com.cn/problem/P3366
标准Prim((O(n^2+m)))代码:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 5050, maxm = 400040;
struct Edge {
int v, w, nxt;
Edge() {};
Edge(int _v, int _w, int _nxt) { v = _v; w = _w; nxt = _nxt; }
} edge[maxm];
int n, m, head[maxn], ecnt;
void init() {
ecnt = 0;
memset(head, -1, sizeof(int)*(n+1));
}
void addedge(int u, int v, int w) {
edge[ecnt] = Edge(v, w, head[u]); head[u] = ecnt ++;
edge[ecnt] = Edge(u, w, head[v]); head[v] = ecnt ++;
}
int cost[maxn], ans;
bool vis[maxn];
void prim() {
memset(cost, -1, sizeof(int)*(n+1));
cost[1] = 0;
for (int t = 0; t < n; t ++) {
int u = -1;
for (int i = 1; i <= n; i ++) {
if (!vis[i] && cost[i] != -1 && (u == -1 || cost[u] > cost[i])) u = i;
}
ans += cost[u];
vis[u] = true;
for (int i = head[u]; i != -1; i = edge[i].nxt) {
int v = edge[i].v, w = edge[i].w;
if (cost[v] == -1 || cost[v] > w) cost[v] = w;
}
}
}
int main() {
cin >> n >> m;
init();
while (m --) {
int u, v, w;
cin >> u >> v >> w;
addedge(u, v, w);
}
prim();
cout << ans << endl;
return 0;
}
然后我寻思 Prim 和 Dijkstra 思想是一样的(不知道这么理解对不对囧~),所以可以采用 Dijkstra 一样的方法对 Prim 进行堆优化。
Prim+优先队列((O(m cdot log m)))代码:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 5050, maxm = 400040;
struct Edge {
int v, w, nxt;
Edge() {};
Edge(int _v, int _w, int _nxt) { v = _v; w = _w; nxt = _nxt; }
} edge[maxm];
int n, m, head[maxn], ecnt;
void init() {
ecnt = 0;
memset(head, -1, sizeof(int)*(n+1));
}
void addedge(int u, int v, int w) {
edge[ecnt] = Edge(v, w, head[u]); head[u] = ecnt ++;
edge[ecnt] = Edge(u, w, head[v]); head[v] = ecnt ++;
}
int cost[maxn], ans;
bool vis[maxn];
struct Node {
int u, cost;
Node() {};
Node(int _u, int _cost) { u = _u; cost = _cost; }
bool operator < (const Node x) const {
return cost > x.cost;
}
};
priority_queue<Node> que;
void prim() {
memset(cost, -1, sizeof(int)*(n+1));
que.push(Node(1, 0));
while (!que.empty()) {
Node nd = que.top();
que.pop();
int u = nd.u;
if (vis[u]) continue;
vis[u] = true;
ans += nd.cost;
for (int i = head[u]; i != -1; i = edge[i].nxt) {
int v = edge[i].v, w = edge[i].w;
if (cost[v] == -1 || cost[v] > w) {
cost[v] = w;
que.push(Node(v, w));
}
}
}
}
int main() {
cin >> n >> m;
init();
while (m --) {
int u, v, w;
cin >> u >> v >> w;
addedge(u, v, w);
}
prim();
cout << ans << endl;
return 0;
}