zoukankan      html  css  js  c++  java
  • [Project Euler] Problem 51

    Problem Description

    By replacing the 1st digit of *3, it turns out that six of the nine possible values: 13, 23, 43, 53, 73, and 83, are all prime.

    By replacing the 3rd and 4th digits of 56**3 with the same digit, this 5-digit number is the first example having seven primes among the ten generated numbers, yielding the family: 56003, 56113, 56333, 56443, 56663, 56773, and 56993. Consequently 56003, being the first member of this family, is the smallest prime with this property.

    Find the smallest prime which, by replacing part of the number (not necessarily adjacent digits) with the same digit, is part of an eight prime value family.

    C++

    This problem seems a bit hard to me at the first look. However, through several steps of analysis, I simplify this problem to some extent .

    #pragma once
    
    const int MAX_NUM = 1000000;
    const int TARGET_COUNT = 8;
    
    int* g_primeArray = NULL;
    int g_primeLength = 0;
    
    // pre decalaration
    bool CheckThisPrime(int prime, char sameChar, int sameCount);
    
    void Initialize()
    {
    	g_primeLength = MAX_NUM / 5;
    	g_primeArray = new int[g_primeLength];
    	MakePrimes(g_primeArray, g_primeLength, MAX_NUM);
    }
    // By analysis, we can infer that the result should has at least three digits with value 0 or 1 or 2, which are not including the lowest digit of the number.
    void Problem_51()
    {
    	Initialize();
    
    	char digitArray[10] = { 0 };
    	int digitCount = 0;
    	for(int i =0; i<g_primeLength; i++)
    	{
    		int curPrime = g_primeArray[i];
    		if(curPrime < 1000)
    			continue;
    
    		sprintf(digitArray, "%d", curPrime);
    		digitCount = strlen(digitArray);
    
    		int zeroCount = 0;
    		int oneCount = 0;
    		int twoCount = 0;
    		for(int j =0; j<digitCount - 1; j++)
    		{
    			if(digitArray[j] == '0')
    				zeroCount++;
    			if(digitArray[j] == '1')
    				oneCount++;
    			if(digitArray[j] == '2')
    				twoCount++;
    		}
    
    		if(zeroCount < 3 && oneCount < 3 && twoCount < 3)
    			continue;
    
    		printf("%d\n", curPrime);
    
    		// int temp = 0;
    		// digitArray[0] = '0';
    		// sscanf(digitArray, "%d", &temp);
    		// printf("%d\n", temp);
    		
    		if(zeroCount >= 3)
    		{
    			if(CheckThisPrime(curPrime, '0', zeroCount))
    			{
    				printf("result = %d\n", curPrime);
    				return;
    			}
    		}
    		
    		if(oneCount >=3)
    		{
    			if(CheckThisPrime(curPrime,'1', oneCount))
    			{
    				printf("result = %d\n", curPrime);
    				return;
    			}
    		}
    
    		if(twoCount >=3)
    		{
    			if(CheckThisPrime(curPrime, '2', twoCount))
    			{
    				printf("result = %d\n", curPrime);
    				return;
    			}
    		}
    
    	}
    }
    
    bool CheckThisPrime(int prime, char sameChar, int sameCount)
    {
    	bool ret = false;
    	char digitArray[10] = { 0 };
    	int digitCount = 0;
    	
    	sprintf(digitArray, "%d", prime);
    	digitCount = strlen(digitArray);
    
    	int* digitIndexArray = new int[sameCount];
    	int index=0;
    	for(int j =0; j<digitCount - 1; j++)
    	{
    		if(digitArray[j] == sameChar)
    			digitIndexArray[index++] = j;
    	}
    
    	// determine which three digits should be modified
    	
    	bool* useArr = new bool[sameCount];
    	useArr[0] = true;
    	useArr[1] = true;
    	useArr[2] = true;
    
    	while(true)
    	{
    		char digitArrayBak[10] = { 0 };
    		memcpy(digitArrayBak, digitArray, 10 * sizeof(char));
    		
    		int primeCount = 1;
    		int notPrimeCount = 0;
    		int notPrimeMax = 2 - (sameChar - '0');
    		for(char c=(char)(sameChar + 1); c<='9' ; c++)
    		{
    			for(int i = 0; i<sameCount; i++)
    			{
    				if(useArr[i])
    				{
    					digitArrayBak[digitIndexArray[i]] = c;
    				}
    			}
    			int temp = 0;
    			sscanf(digitArrayBak, "%d", &temp);
    			if(IsPrime(temp))
    			{
    				primeCount++;
    			}
    			else
    			{
    				notPrimeCount++;
    			}
    
    			if(notPrimeCount > notPrimeMax)
    			{
    				break;
    			}
    
    			if(primeCount == TARGET_COUNT)
    			{
    				ret = true;
    				goto LRESULT;
    			}
    		}
    
    		int reachEndCount = 0;
    		for(int i = sameCount -1; i>=0; i--)
    		{
    			if(useArr[i])
    			{
    				reachEndCount++;
    			}
    			else
    			{
    				break;
    			}
    		}
    
    		if(reachEndCount == 3)
    			break;
    
    		for(int i = sameCount -1 - reachEndCount; i>=0; i--)
    		{
    			if(useArr[i])
    			{
    				useArr[i] = false;
    				useArr[i+1] = true;
    				break;
    			}
    		}
    	}	
    	
    LRESULT:
    	delete[] digitIndexArray;
    	delete[] useArr;
    	return ret;
    }
    
  • 相关阅读:
    FunctionGraph无缝集成Express应用
    三分钟迁移Spring boot工程到Serverless
    分布式数据库中间件使用经验分享
    基于OAS设计可扩展OpenAPI
    从一次小哥哥与小姐姐的转账开始, 浅谈分布式事务从理论到实践
    分布式数据库DDM Sidecar模式负载均衡
    Redis缓存数据库安全加固指导(二)
    数据存储课后作业
    GrideVlew提供点击按钮添加新数据,单击项目修改,长按删除功能
    AutoCompleteTextView,Spinner,消息提示
  • 原文地址:https://www.cnblogs.com/quark/p/2564023.html
Copyright © 2011-2022 走看看